Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794746

RESUMEN

BACKGROUND: Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus (Lr) is a known anti-cytokine in lung diseases; however, the effect of Lr on lung inflammation and oxidative stress in steroid-resistant COPD mice remains unknown. OBJECTIVE: Thus, we investigated the Lr effect on lung inflammation and oxidative stress in mice and macrophages exposed to cigarette smoke extract (CSE) and unresponsive to steroids. METHODS: Mice and macrophages received dexamethasone or GLPG-094 (a GPR43 inhibitor), and only the macrophages received butyrate (but), all treatments being given before CSE. Lung inflammation was evaluated from the leukocyte population, airway remodeling, cytokines, and NF-κB. Oxidative stress disturbance was measured from ROS, 8-isoprostane, NADPH oxidase, TBARS, SOD, catalase, HO-1, and Nrf2. RESULTS: Lr attenuated cellularity, mucus, collagen, cytokines, ROS, 8-isoprostane, NADPH oxidase, and TBARS. Otherwise, SOD, catalase, HO-1, and Nrf2 were upregulated in Lr-treated COPD mice. Anti-cytokine and antioxidant effects of butyrate also occurred in CSE-exposed macrophages. GLPG-094 rendered Lr and butyrate less effective. CONCLUSIONS: Lr attenuates lung inflammation and oxidative stress in COPD mice, suggesting the presence of a GPR43 receptor-dependent mechanism also found in macrophages.


Asunto(s)
Lacticaseibacillus rhamnosus , Macrófagos , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica , Receptores Acoplados a Proteínas G , Animales , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Humo/efectos adversos , Dexametasona/farmacología , Butiratos/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo
2.
Microb Pathog ; 189: 106607, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437995

RESUMEN

OBJECTIVES: The selected kyotorphin derivatives were tested to improve their antimicrobial and antibiofilm activity. The antimicrobial screening of the KTP derivatives were ascertained in the representative strains of bacteria, including Streptococcus pneumoniae, Streptococcus pyogenes, Escherichia coli and Pseudomonas aeruginosa. METHODS: Kyotorphin derivatives, KTP-NH2, KTP-NH2-DL, IbKTP, IbKTP-NH2, MetKTP-DL, MetKTP-LD, were designed and synthesized to improve lipophilicity and resistance to enzymatic degradation. Peptides were synthesized by standard solution or solid-phase peptide synthesis and purified using RP-HPLC, which resulted in >95 % purity, and were fully characterized by mass spectrometry and 1H NMR. The minimum inhibitory concentrations (MIC) determined for bacterial strains were between 20 and 419 µM. The direct effect of IbKTP-NH2 on bacterial cells was imaged using scanning electron microscopy. The absence of toxicity, high survival after infection and an increase in the hemocytes count was evaluated by injections of derivatives in Galleria mellonella larvae. Proteomics analyses of G. mellonella hemolymph were performed to investigate the underlying mechanism of antibacterial activity of IbKTP-NH2 at MIC. RESULTS: IbKTP-NH2 induces morphological changes in bacterial cell, many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and virulence were up-regulated after the treatment of G. mellonella with IbKTP-NH2. CONCLUSION: We suggest that this derivative, in addition to its physical activity on the bacterial membranes, can elicit a cellular and humoral immune response, therefore, it could be considered for biomedical applications.


Asunto(s)
Antiinfecciosos , Endorfinas , Mariposas Nocturnas , Animales , Proteómica , Mariposas Nocturnas/microbiología , Antibacterianos/farmacología , Larva , Péptidos
3.
Methods Mol Biol ; 2758: 319-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549022

RESUMEN

Snake venom peptidomes are known to be a large source of molecules with different pharmacological properties. The complexity and variability of snake venoms, the presence of proteinases, and the lack of complete species-specific genome sequences make snake venom peptidome profiling a challenging task that requires especial technical strategies for sample processing and mass spectrometric analysis. Here, we describe a method for assessing the content of snake venom peptides and highlight the importance of sampling procedures, as they substantially influence the peptidomic complexity of snake venoms.


Asunto(s)
Péptidos , Venenos de Serpiente , Venenos de Serpiente/química , Péptidos/química , Espectrometría de Masas , Genoma , Péptido Hidrolasas
4.
Biochimie ; 216: 90-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839625

RESUMEN

Snake venoms are primarily composed of proteins and peptides, which selectively interact with specific molecular targets, disrupting prey homeostasis. Identifying toxins and the mechanisms involved in envenoming can lead to the discovery of new drugs based on natural peptide scaffolds. In this study, we used mass spectrometry-based peptidomics to sequence 197 peptides in the venom of Bothrops cotiara, including a novel 7-residue peptide derived from a snake venom metalloproteinase. This peptide, named Bc-7a, features a pyroglutamic acid at the N-terminal and a PFR motif at the C-terminal, homologous to bradykinin. Using FRET (fluorescence resonance energy transfer) substrate assays, we demonstrated that Bc-7a strongly inhibits the two domains of angiotensin converting enzyme (Ki < 1 µM). Our findings contribute to the repertoire of biologically active peptides from snake venoms capable of inhibiting angiotensin-converting enzyme (ACE), beyond current known structural motifs and precursors. In summary, we report a novel snake venom peptide with ACE inhibitory activity, suggesting its potential contribution to the hypotensive effect observed in envenomation.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Venenos de Crotálidos/química , Péptidos/química , Venenos de Serpiente/química , Bothrops/metabolismo , Metaloproteasas , Angiotensinas/metabolismo
5.
Front Cell Infect Microbiol ; 13: 1268959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868350

RESUMEN

Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1ß, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.


Asunto(s)
Paracoccidioides , Paracoccidioidomicosis , Animales , Ratones , Paracoccidioides/genética , Proteómica , Ratones Endogámicos C57BL , Hierro/metabolismo , Inmunidad , Granuloma
6.
Expert Rev Proteomics ; 20(12): 345-355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37873978

RESUMEN

INTRODUCTION: Cancer is a disease of (altered) biological pathways, often driven by somatic mutations and with several implications. Therefore, the identification of potential markers of disease is challenging. Given the large amount of biological data generated with omics approaches, oncology has experienced significant contributions. Proteomics mapping of protein fragments, derived from proteolytic processing events during oncogenesis, may shed light on (i) the role of active proteases and (ii) the functional implications of processed substrates in biological signaling circuits. Both outcomes have the potential for predicting diagnosis/prognosis in diseases like cancer. Therefore, understanding proteolytic processing events and their downstream implications may contribute to advances in the understanding of tumor biology and targeted therapies in precision medicine. AREAS COVERED: Proteolytic events associated with some hallmarks of cancer (cell migration and proliferation, angiogenesis, metastasis, as well as extracellular matrix degradation) will be discussed. Moreover, biomarker discovery and the use of proteomics approaches to uncover proteolytic signaling events will also be covered. EXPERT OPINION: Proteolytic processing is an irreversible protein post-translational modification and the deconvolution of biological data resulting from the study of proteolytic signaling events may be used in both patient diagnosis/prognosis and targeted therapies in cancer.


Asunto(s)
Neoplasias , Péptido Hidrolasas , Humanos , Proteolisis , Péptido Hidrolasas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas/metabolismo
7.
Proteomics ; 23(23-24): e2200243, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37474490

RESUMEN

Cellular communication relies on signaling circuits whose statuses are mainly modulated by soluble biomolecules such as carbohydrates, lipids, proteins, and metabolites as well as extracellular vesicles (EVs). Therefore, the active secretion of such biomolecules is critical for both cell homeostasis and proper pathophysiological responses in a timely fashion. In this context, proteins are among the main modulators of such biological responses. Hence, profiling cell line secretomes may be an opportunity for the identification of "signatures" of specific cell types (i.e., stromal or metastatic cells) with important prognostic/therapeutic value. This review will focus on the biological implications of cell secretomes in the context of cancer, as well as their functional roles in shaping the tumoral microenvironment (TME) and communication status of participating cells.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Secretoma , Neoplasias/genética , Neoplasias/patología , Transducción de Señal , Comunicación Celular , Adaptación Fisiológica , Microambiente Tumoral
8.
Biochimie ; 214(Pt B): 1-10, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37315762

RESUMEN

Snake venom protein synthesis undergoes finely regulated processes in the specialized secretory epithelium within the venom gland. Such processes occur within a defined period in the cell and at specific cellular locations. Thus, the determination of subcellular proteomes allows the characterization of protein groups for which the site may be relevant to their biological roles, thereby allowing the deconvolution of complex biological circuits into functional information. In this regard, we performed subcellular fractionation of proteins from B. jararaca venom gland, focusing on nuclear proteins since this cellular compartment comprises key effectors that shape gene expression. Our results provided a snapshot of B. jararaca's subcellular venom gland proteome and pointed to a 'conserved' proteome core among different life stages (newborn and adult) and between sexes (adult male and female). Overall, the top 15 highly abundant proteins identified in B. jararaca venom glands mirrored the panel of highly expressed genes in human salivary glands. Therefore, the expression profile observed for such a protein set could be considered a conserved core signature of salivary gland secretory epithelium. Moreover, the newborn venom gland displayed a unique expression signature of transcription factors involved in regulating transcription and biosynthetic processes and may mirror biological constraints of the ontogenetic development of B. jararaca, contributing to venom proteome diversity.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Humanos , Recién Nacido , Femenino , Masculino , Proteoma/metabolismo , Bothrops/metabolismo , Factores de Transcripción/metabolismo , Proteínas Nucleares/metabolismo
9.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674590

RESUMEN

Receptors on the immune cell surface have a variety of glycans that may account for the immunomodulation induced by lectins, which have a carbohydrate recognition domain (CRD) that binds to monosaccharides or oligosaccharides in a specific manner. ArtinM, a D-mannose-binding lectin obtained from Artocarpus heterophyllus, has affinity for the N-glycans core. Immunomodulation by ArtinM toward the Th1 phenotype occurs via its interaction with TLR2/CD14 N-glycans on antigen-presenting cells, as well as recognition of CD3γ N-glycans on murine CD4+ and CD8+ T cells. ArtinM exerts a cytotoxic effect on Jurkat human leukemic T-cell line and human myeloid leukemia cell line (NB4). The current study evaluated the effects of ArtinM on murine and human B cells derived from non-Hodgkin's lymphoma. We found that murine B cells are recognized by ArtinM via the CRD, and the ArtinM stimulus did not augment the proliferation rate or production of IL-2. However, murine B cell incubation with ArtinM augmented the rate of apoptosis, and this cytotoxic effect of ArtinM was also seen in human B cell-lines sourced from non-Hodgkin's lymphoma Raji cell line. This cytotoxic effect was inhibited by the phosphatase activity of CD45 on Lck, and the protein kinases of the Src family contribute to cell death triggered by ArtinM.


Asunto(s)
Linfoma no Hodgkin , Familia-src Quinasas , Ratones , Humanos , Animales , Lectinas/farmacología , Línea Celular , Polisacáridos/metabolismo , Quinasa Syk
10.
J Proteome Res ; 21(11): 2783-2797, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36260604

RESUMEN

Acanthoscurria juruenicola is an Amazonian spider described for the first time almost a century ago. However, little is known about their venom composition. Here, we present a multiomics characterization of A. juruenicola venom by a combination of transcriptomics, proteomics, and peptidomics approaches. Transcriptomics of female venom glands resulted in 93,979 unique assembled mRNA transcript encoding proteins. A total of 92 proteins were identified in the venom by mass spectrometry, including 14 mature cysteine-rich peptides (CRPs). Quantitative analysis showed that CRPs, cysteine-rich secretory proteins, metalloproteases, carbonic anhydrases, and hyaluronidase comprise >90% of the venom proteome. Relative quantification of venom toxins was performed by DIA and DDA, revealing converging profiles of female and male specimens by both methods. Biochemical assays confirmed the presence of active hyaluronidases, phospholipases, and proteases in the venom. Moreover, the venom promoted in vivo paralytic activities in crickets, consistent with the high concentration of CRPs. Overall, we report a comprehensive analysis of the arsenal of toxins of A. juruenicola and highlight their potential biotechnological and pharmacological applications. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD013149 and via the MassIVE repository with the dataset identifier MSV000087777.


Asunto(s)
Venenos de Araña , Arañas , Animales , Masculino , Femenino , Arañas/genética , Arañas/metabolismo , Venenos de Araña/genética , Venenos de Araña/química , Venenos de Araña/metabolismo , Cisteína/metabolismo , Proteómica/métodos , Espectrometría de Masas/métodos , Proteoma/genética , Proteoma/metabolismo , Péptidos/análisis
11.
Microb Genom ; 8(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36250787

RESUMEN

Whole-genome sequence analyses have significantly contributed to the understanding of virulence and evolution of the Mycobacterium tuberculosis complex (MTBC), the causative pathogens of tuberculosis. Most MTBC evolutionary studies are focused on single nucleotide polymorphisms and deletions, but rare studies have evaluated gene content, whereas none has comprehensively evaluated pseudogenes. Accordingly, we describe an extensive study focused on quantifying and predicting possible functions of MTBC and Mycobacterium canettii pseudogenes. Using NCBI's PGAP-detected pseudogenes, we analysed 25 837 pseudogenes from 158 MTBC and M. canetii strains and combined transcriptomics and proteomics of M. tuberculosis H37Rv to gain insights about pseudogenes' expression. Our results indicate significant variability concerning rate and conservancy of in silico predicted pseudogenes among different ecotypes and lineages of tuberculous mycobacteria and pseudogenization of important virulence factors and genes of the metabolism and antimicrobial resistance/tolerance. We show that in silico predicted pseudogenes contribute considerably to MTBC genetic diversity at the population level. Moreover, the transcription machinery of M. tuberculosis can fully transcribe most pseudogenes, indicating intact promoters and recent pseudogene evolutionary emergence. Proteomics of M. tuberculosis and close evaluation of mutational lesions driving pseudogenization suggest that few in silico predicted pseudogenes are likely capable of neofunctionalization, nonsense mutation reversal, or phase variation, contradicting the classical definition of pseudogenes. Such findings indicate that genome annotation should be accompanied by proteomics and protein function assays to improve its accuracy. While indels and insertion sequences are the main drivers of the observed mutational lesions in these species, population bottlenecks and genetic drift are likely the evolutionary processes acting on pseudogenes' emergence over time. Our findings unveil a new perspective on MTBC's evolution and genetic diversity.


Asunto(s)
Mycobacterium tuberculosis , Seudogenes , Antiinfecciosos , Codón sin Sentido , Elementos Transponibles de ADN , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Seudogenes/genética , Factores de Virulencia/genética , Farmacorresistencia Bacteriana/genética
12.
Peptides ; 154: 170814, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644302

RESUMEN

The main protease Mpro of SARS-CoV-2 is a well-studied major drug target. Additionally, it has been linked to this virus' pathogenicity, possibly through off-target effects. It is also an interesting diagnostic target. To obtain more data on possible substrates as well as to assess the enzyme's primary specificity a two-step approach was introduced. First, Terminal Amine Isobaric Labeling of Substrates (TAILS) was employed to identify novel Mpro cleavage sites in a mouse lung proteome library. In a second step, using a structural homology model, the MM/PBSA variant MM/GBSA (Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area) free binding energy calculations were carried out to determine relevant interacting amino acids. As a result, 58 unique cleavage sites were detected, including six that displayed glutamine at the P1 position. Furthermore, modeling results indicated that Mpro has a far higher potential promiscuity towards substrates than expected. The combination of proteomics and MM/PBSA modeling analysis can thus be useful for elucidating the specificity of Mpro, and thus open novel perspectives for the development of future peptidomimetic drugs against COVID-19, as well as diagnostic tools.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Proteasas 3C de Coronavirus , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos/metabolismo , Inhibidores de Proteasas , Proteómica
13.
Biochem Biophys Rep ; 30: 101259, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35462751

RESUMEN

Autocrine and paracrine signals are of paramount importance in both normal and oncogenic events and the composition of such secreted molecular signals (i.e the secretome) designate the communication status of cells. In this context, the analysis of post-translational modifications in secreted proteins may unravel biological circuits regulated by irreversible modifications such as proteolytic processing. In the present study, we have performed a bioinformatic reanalysis of public proteomics data on melanoma cell line secretomes, changing database searching parameters to allow for the identification of proteolytic events generated by active proteases. Such approach enabled the identification of proteolytic signatures which suggested active proteases and whose expression profiles might be targeted in patient tissues or liquid biopsies, as well as their cleaved substrates. Although N-terminomics approaches continue to be the method of choice for the evaluation of proteolytic signaling events in complex samples, the simple approach performed in this work resulted in the gain of biological insights derived from shotgun proteomics data.

14.
Traffic ; 23(2): 98-108, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34806804

RESUMEN

Proteins secreted by tumoral cells (cancer secretomes) have been continuously associated with cancer development and progression processes. In this context, secreted proteins contribute to the signaling mechanisms related to tumor growth and spreading and studies on tumor secretomes provide valuable clues on putative tumor biomarkers. Although the in vitro identification of intracellular proteins in cancer secretome studies has usually been associated with contamination derived from cell lysis or fetal bovine serum, accumulated evidence reports on intracellular proteins with moonlighting functions in the extracellular environment. In this study, we performed a systematic reanalysis of public proteomics data regarding different cancer secretomes, aiming to identify intracellular proteins potentially secreted by tumor cells via unconventional secretion pathways. We found a similar repertoire of unconventionally secreted proteins, including the recurrent identification of nuclear proteins secreted by different cancer cells. In addition, in some cancer types, immunohistochemical data were in line with proteomics identifications and suggested that nuclear proteins might relocate from the nucleus to the cytoplasm. Both the presence of nuclear proteins and the likely unconventional secretion of such proteins may comprise biological signatures of malignant transformation in distinct cancer types and may be targeted for further analysis aiming at the prognostic/therapeutic value of such features.


Asunto(s)
Neoplasias , Proteómica , Biomarcadores de Tumor/metabolismo , Biología Computacional , Humanos , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Secretoma
15.
Toxins (Basel) ; 13(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34822548

RESUMEN

Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon that involves capillary disruption and blood extravasation. HF3 (hemorrhagic factor 3) is an extremely hemorrhagic SVMP of Bothrops jararaca venom. Studies using proteomic approaches revealed targets of HF3 among intracellular and extracellular proteins. However, the role of the cleavage of plasma proteins in the context of the hemorrhage remains not fully understood. The main goal of this study was to analyze the degradome of HF3 in human plasma. For this purpose, approaches for the depletion of the most abundant proteins, and for the enrichment of low abundant proteins of human plasma, were used to minimize the dynamic range of protein concentration, in order to assess the proteolytic activity of HF3 on a wide spectrum of proteins, and to detect the degradation products using mass spectrometry-based untargeted peptidomics. The results revealed the hydrolysis products generated by HF3 and allowed the identification of cleavage sites. A total of 61 plasma proteins were identified as cleaved by HF3. Some of these proteins corroborate previous studies, and others are new HF3 targets, including proteins of the coagulation cascade, of the complement system, proteins acting on the modulation of inflammation, and plasma proteinase inhibitors. Overall, the data indicate that HF3 escapes inhibition and sculpts the plasma proteome by degrading key proteins and generating peptides that may act synergistically in the hemorrhagic process.


Asunto(s)
Proteínas Sanguíneas/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Metaloendopeptidasas/toxicidad , Venenos de Serpiente/toxicidad , Animales , Bothrops , Humanos , Venenos de Serpiente/enzimología
16.
Biochim Biophys Acta Proteins Proteom ; 1869(7): 140643, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33722654

RESUMEN

Using approaches of transcriptomics and proteomics we have shown that the phenotype of Bothrops jararaca venom undergoes a significant rearrangement upon neonate to adult transition. Most regulatory processes in biology are intrinsically related to modifications of protein structure, function, and abundance. However, it is unclear to which extent intrinsic proteolysis affects toxins and snake venom phenotypes upon ontogenesis. Here we assessed the natural N-terminome of Bothrops jararaca newborn and adult venoms and explored the degree of N-terminal protein truncation in ontogenetic-based proteome variation. To this end we applied the Terminal Amine Isotopic Labeling of Substrates (TAILS) technology to characterize venom collected in the presence of proteinase inhibitors. We identified natural N-terminal sequences in the newborn (71) and adult (84) venoms, from which only 37 were common to both. However, truncated toxins were found in higher number in the newborn (212) than in the adult (140) venom. Moreover, sequences N-terminally blocked by pyroglutamic acid were identified in the newborn (55) and adult (49) venoms. Most toxin classes identified by their natural N-terminal sequences showed a similar number of unique peptides in the newborn and adult venoms, however, those of serine proteinases and C-type lectins were more abundant in the adult venom. Truncated sequences from at least ten toxin classes were detected, however the catalytic and cysteine-rich domains of metalloproteinases were the most prone to proteolysis, mainly in the newborn venom. Our results underscore the pervasiveness of truncations in most toxin classes and highlight variable post-translational events in newborn and adult venoms.


Asunto(s)
Venenos de Crotálidos/química , Factores de Edad , Animales , Animales Recién Nacidos , Bothrops/metabolismo , Cromatografía Liquida/métodos , Venenos de Crotálidos/metabolismo , Perfilación de la Expresión Génica/métodos , Proteolisis , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Toxinas Biológicas , Transcriptoma/genética
17.
J Proteome Res ; 20(2): 1341-1358, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33404253

RESUMEN

Bothrops alcatraz, a species endemic to Alcatrazes Islands, is regarded as critically endangered due to its small area of occurrence and the declining quality of its habitat. We recently reported the identification of N-glycans attached to toxins of Bothrops species, showing similar compositions in venoms of the B. jararaca complex (B. jararaca, B. insularis, and B. alcatraz). Here, we characterized B. alcatraz venom using electrophoretic, proteomic, and glycoproteomic approaches. Electrophoresis showed that B. alcatraz venom differs from B. jararaca and B. insularis; however, N-glycan removal revealed similarities between them, indicating that the occupation of N-glycosylation sites contributes to interspecies variability in the B. jararaca complex. Metalloproteinase was the major toxin class identified in the B. alcatraz venom proteome followed by serine proteinase and C-type lectin, and overall, the adult B. alcatraz venom resembles that of B. jararaca juvenile specimens. The comparative glycoproteomic analysis of B. alcatraz venom with B. jararaca and B. insularis indicated that there may be differences in the utilization of N-glycosylation motifs among their different toxin classes. Furthermore, we prospected for the first time the N-terminome of a snake venom using the terminal amine isotopic labeling of substrates (TAILS) approach and report the presence of ∼30% of N-termini corresponding to truncated toxin forms and ∼37% N-terminal sequences blocked by pyroglutamic acid in B. alcatraz venom. These findings underscore a low correlation between venom gland transcriptomes and proteomes and support the view that post-translational processes play a major role in shaping venom phenotypes.


Asunto(s)
Bothrops , Venenos de Crotálidos , Aminas , Animales , Proteoma , Proteómica
18.
J Proteomics ; 232: 104063, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33276191

RESUMEN

Protein-protein interaction networks (PPINs) are static representations of protein connections in which topological features such as subgraphs (communities) may contain proteins functionally related, revealing an additional layer of interactome complexity. We created two PPINs from the secretomes of a paired set of murine melanocytes (a normal melanocyte and its transformed phenotype). Community structures, identified by a graph clustering algorithm, resulted in the identification of subgraphs in both networks. Interestingly, the underlying structure of such communities revealed shared and exclusive proteins (core and exclusive nodes, respectively), in addition to proteins that changed their location within each community (rewired nodes). Functional enrichment analysis of core nodes revealed conserved biological functions in both networks whereas exclusive and rewired nodes in the tumoral phenotype network were enriched in cancer-related processes, including TGFß signaling. We found a remarkable shift in the tumoral interactome, resulting in an emerging pattern which was driven by the presence of exclusive nodes and may represent functional network motifs. Our findings suggest that the rearrangement in the tumoral interactome may be correlated with the malignant transformation of melanocytes associated with substrate adhesion impediment. The interactions found in core and new/rewired nodes might potentially be targeted for therapeutic intervention in melanoma treatment. SIGNIFICANCE: Malignant transformation is a result of synergistic action of multiple molecular factors in which genetic alterations as well as protein expression play paramount roles. During oncogenesis, cellular crosstalk through the secretion of soluble mediators modulates the phenotype of transformed cells which ultimately enables them to successfully disrupt important signaling pathways, including those related to cell growth and proliferation. Therefore, in this work we profiled the secretomes of a paired set of normal and transformed phenotypes of a murine melanocyte. After assembling the two interactomes, clusters of functionally related proteins (network communities) were observed as well as emerging patterns of network rewiring which may represent an interactome signature of transformed cells. In summary, the significance of this study relies on the understanding of the repertoire of 'normal' and 'tumoral' secretomes and, more importantly, the set of interacting proteins (the interactome) in both of these conditions, which may reveal key components that might be potentially targeted for therapeutic intervention.


Asunto(s)
Melanoma , Animales , Análisis por Conglomerados , Melanocitos , Ratones , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica
19.
Biochim Biophys Acta Proteins Proteom ; 1868(12): 140525, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866629

RESUMEN

The signaling events triggered by soluble mediators released from both transformed and stromal cells shape the phenotype of tumoral cells and have significant implications in cancer development and progression. In this study we performed an in vitro heterotypic signaling assays by evaluating the proteome diversity of human dermal fibroblasts after stimulation with the conditioned media obtained from malignant melanoma cells. In addition, we also evaluated the changes in the proteome of melanoma cells after stimulation with their own conditioned media as well as with the conditioned medium from melanoma-stimulated fibroblasts. Our results revealed a clear rearrangement in the proteome of stromal and malignant cells upon crosstalk of soluble mediators. The main proteome signature of fibroblasts stimulated with melanoma conditioned medium was related to protein synthesis, which indicates that this process might be an early response of stromal cells. In addition, the conditioned medium derived from 'primed' stromal cells (melanoma-stimulated fibroblasts) was more effective in altering the functional phenotype (cell migration) of malignant cells than the conditioned medium from non-stimulated fibroblasts. Collectively, self- and cross-stimulation may play a key role in shaping the tumor microenvironment and enable tumoral cells to succeed in the process of melanoma progression and metastasis. Although the proteome landscape of cells participating in such a heterotypic signaling represents a snapshot of a highly dynamic state, understanding the diversity of proteins and enriched biological pathways resulting from stimulated cell states may allow for targeting specific cell regulatory motifs involved in melanoma progression and metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Dermis/citología , Melanoma/metabolismo , Proteoma , Transducción de Señal , Adaptación Fisiológica , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Movimiento Celular/genética , Biología Computacional/métodos , Medios de Cultivo Condicionados , Humanos , Melanoma/genética , Melanoma/patología , Fenotipo , Proteómica/métodos , Microambiente Tumoral
20.
Sci Rep ; 10(1): 12912, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737331

RESUMEN

Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Bothrops , Venenos de Crotálidos/toxicidad , Hemorragia , Metaloproteasas/toxicidad , Peptidoglicano/sangre , Proteolisis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/sangre , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/sangre , Proteínas de Reptiles/toxicidad , Animales , Hemorragia/sangre , Hemorragia/inducido químicamente , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA