RESUMEN
Communication between natural killer cells (NK cells) and monocytes/macrophages may play an important role in immunomodulation and regulation of inflammatory processes. The aim of this research was to investigate the impact of NK cell-derived large extracellular vesicles on monocyte function because this field is understudied. We studied how NK-cell derived large extracellular vesicles impact on THP-1 cells characteristics after coculturing: phenotype, functions were observed with flow cytometry. In this study, we demonstrated the ability of large extracellular vesicles produced by NK cells to integrate into the membranes of THP-1 cells and influence the viability, phenotype, and functional characteristics of the cells. The results obtained demonstrate the ability of large extracellular vesicles to act as an additional component in the immunomodulatory activity of NK cells in relation to monocytes.
Asunto(s)
Vesículas Extracelulares , Células Asesinas Naturales , Monocitos , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/citología , Células THP-1 , Técnicas de Cocultivo , Comunicación Celular/inmunología , Supervivencia Celular , Macrófagos/inmunología , Macrófagos/metabolismoRESUMEN
The interaction of natural killer (NK) and trophoblast cells underlies the formation of immune tolerance in the mother-fetus system and the maintenance of the physiological course of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived from NK cells are able to change the function of target cells. However, in the overall pattern of interactions between NK cells and trophoblasts, the possibility that both can transmit signals to each other via MVs has not been taken into account. Therefore, the aim of this study was to assess the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast cells and their expression of intracellular messengers. We carried out assays for the detection of content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further, the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation of STAT3 signaling.
RESUMEN
Angiogenesis is the development of new blood vessels from pre-existing ones. It is a complex multifaceted process that is essential for the adequate functioning of human organisms. The investigation of angiogenesis is conducted using various methods. One of the most popular and most serviceable of these methods in vitro is the short-term culture of endothelial cells on Matrigel. However, a significant disadvantage of this method is the manual analysis of a large number of microphotographs. In this regard, it is necessary to develop a technique for automating the annotation of images of capillary-like structures. Despite the increasing use of deep learning in biomedical image analysis, as far as we know, there still has not been a study on the application of this method to angiogenesis images. To the best of our knowledge, this article demonstrates the first tool based on a convolutional Unet++ encoder-decoder architecture for the semantic segmentation of in vitro angiogenesis simulation images followed by the resulting mask postprocessing for data analysis by experts. The first annotated dataset in this field, AngioCells, is also being made publicly available. To create this dataset, participants were recruited into a markup group, an annotation protocol was developed, and an interparticipant agreement study was carried out.