Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 665: 510-517, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38547632

RESUMEN

Designing low-content and high-activity Pt-based catalysts with the high durability for the electrochemical hydrogen production remains a challenge. In this study, a ternary metal phosphide (NiCoP) with 1D nanowire (NW) and 2D nanosheet (NS) morphologies incorporating Pt clusters (denoted as Ptcluster-NiCoP@NF NWs and Ptcluster-NiCoP@NF NSs, respectively) was prepared using a hydrothermal-phosphorization-electrodeposition method. Based on the "tip effect" of NWs and a high electrochemical surface area, the as-prepared Ptcluster-NiCoP@NF NWs display better hydrogen evolution reaction (HER) performance, with a low overpotential of 65 mV at a high current density of 100 mA cm-2 and a low Tafel slope of 38.86 mV dec-1, than the Ptcluster-NiCoP@NF NSs, with an overportential of 95 mV at 42.53 mV dec-1. This indicates that the NiCoP NW-based support exhibits faster HER kinetics. The mass activity (11.47 A mgPt-1) of the Ptcluster-NiCoP@NF NWs is higher than that of commercial Pt/C catalysts. Significantly, the Ptcluster-NiCoP@NF NWs display excellent cyclic stability with negligible losses for 5000 cycles and 30-h tests at a high current of 500 mA cm-2.

2.
J Colloid Interface Sci ; 633: 424-431, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36462265

RESUMEN

Zinc-air batteries (ZABs) are regarded as attractive devices for electrochemical energy storage and conversion due to their outstanding electrochemical performance, low price, and high safety. However, it remains a challenge to design a stable and efficient bifunctional oxygen catalyst that can accelerate the reaction kinetics and improve the performance of ZABs. Herein, a phosphorus-doped transition metal selenide/carbon composite catalyst derived from metal-organic frameworks (P-CoSe2/C@CC) is constructed by a self-supporting carbon cloth structure through a simple solvothermal process with subsequent selenization and phosphatization. The P-CoSe2/C@CC exhibits a low overpotential of 303.1 mV at 10 mA cm-2 toward the oxygen evolution reaction and an obvious reduction peak for the oxygen reduction reaction. The abovementioned electrochemical performances for the P-CoSe2/C@CC are attributed to the specific architecture, the super-hydrophilic surface, and the P-doping effect. Remarkably, the homemade zinc-air battery based on our P-CoSe2/C@CC catalyst shows an expected peak power density of 124.4 mW cm-2 along with excellent cycling stability, confirming its great potential application in ZABs for advanced bifunctional electrocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...