RESUMEN
To determine the suitability and credibility of similar water-absorbent mudstone materials in model experiments, the prototype mudstone parameter similarity index was determined based on the similarity theory. Similar materials use cement and Plaster as binders and quartz sand as aggregate. The sensitivity of similar indicators of similar materials to control factors was analyzed through range statistics. Multiple regression analysis was used to establish the quantitative relationship between each control factor and similar indicators. Finally, the optimal matching scheme was refined through the combination of fuzzy mathematics and analytic hierarchy process. The results show that the physical and mechanical property indicators of similar materials with different proportions have a wide distribution range, and under certain similar conditions, they can meet the requirements of rock model tests with different properties. The aggregate-binder ratio is a direct indicator of material density, elastic modulus, and compressive strength. The main controlling factors, material density, elastic modulus, and compressive strength all increase with the decrease in aggregate-binder ratio. The cement-plaster ratio is the main control factor of material water absorption, and the water absorption gradually decreases with the increase of the cement-plaster ratio. The formula obtained through linear analysis can better represent the changing trend and distribution characteristics of various parameters of similar materials with the aggregate-binder ratio and cement-plaster ratio, and initially optimize the proportioning scheme of similar materials. Use fuzzy mathematics to evaluate the membership degree of each parameter index of similar materials, and the optimal ratio scheme was further determined to improve the credibility of later model experiments.
RESUMEN
To determine a reasonable control strategy for deep buried soft rock roadways, a study on deformation and failure characteristics was carried out. The Weibull distribution damage variable was introduced to construct a damage-softening model considering the lateral deformation of the rock mass, and the functional relationship between the model parameters F0 and m and the confining pressure were discussed. The nonlinear fitting method was used to correct the model parameters. Using the model, the failure characteristics of deep buried soft rock roadways were analyzed. A comprehensive and step-by-step joint support control strategy was proposed based on the numerical simulation results. The research results showed that the damage-softening model curve established could genuinely reflect the whole process of mudstone failure. The apparent stress concentration phenomenon occurred in the surrounding rock. The surrounding rock deformation showed that roadway floors had larger plastic failure areas than sides and vaults. The plastic failure depth could reach 2.45 m. After a comprehensive and step-by-step joint support control strategy was adopted, the deformation rate of the roadway at the section was less than 0.1 mm/d. The optimized support scheme can effectively improve the stability of the roadway.
RESUMEN
Salted radish is a popular high-salinity table food in China, and nitrite is always generated during the associated pickling process. However, this nitrite can be naturally degraded, and the underlying mechanism is unknown. Here, we identified the microbial groups that dominate the natural degradation of nitrite in salted radish and clarified the related metabolic mechanism. Based on dynamic monitoring of pH and the concentrations of nitrogen compounds as well as high-throughput sequencing analysis of the structural succession of microbial communities in the tested salted radish, we determined that the halophilic archaea derived from pickling salt dominate the natural degradation of nitrite via denitrification. Based on isolation, identification, nitrite reduction assays, and genome annotation, we further determined that Haloarcula, Halolamina, and Halobacterium were the key genera. These halophilic archaea might cope with high salt stress through the "salt-in" mechanism with the assistance of the accumulation of potassium ions, obtain electrons necessary for "truncated denitrification" from the metabolism of extracellular glucose absorbed from salted radish, and efficiently reduce nitrite to nitrogen, bypassing nitrite generation from nitrate reduction. The present study provides important information for the prevention and control of nitrite hazards in salted vegetables with high salinity, such as salted radish.
Asunto(s)
Nitritos , Raphanus , China , Nitratos , Nitritos/metabolismo , Nitrógeno/metabolismo , Raphanus/químicaRESUMEN
In the mining process of working face, the additional stress generated by the fault changes the law of roadway deformation and failure as well as the law of overburden failure. Aiming at the influence of the fault in the mining process of working face, this study introduced the geological strength index (GSI) to analyze the stress distribution in the elastic-plastic zone of the surrounding rock of the roadway. And similar experiments under different engineering backgrounds were combined to study the characteristics of overburden movement and stress evolution. Based on the conclusions obtained, the roadway support scheme was designed. This study shows that, compared with ordinary mining, through-the-fault mining causes slippage and dislocation of the fault, the load of the overburden is transferred to both sides of the fault, and the stress near the fault accumulates abnormally. The "three zones" characteristics of the overburden movement disappear, the subsidence pattern is changed from "trapezoid" to "inverted triangle", and the influence distance of the advanced mining stress on the working face is extended from 20m to 30m. The instability range of roadway surrounding rock is exponentially correlated with the rupture degree of the surrounding rock. Through the introduction of GSI, the critical instability range of roadway surrounding rock is deduced to be 2.32m. According to the conclusion, the bolt length and roadway reinforced support length are redesigned. Engineering application shows that the deformation rate of the roadway within 60 days is controlled below 0.1~0.5mm/d, the deformation amount is controlled within 150mm, and the roadway deformation is controlled, which generally meets the requirements of use. The research results provide guidance and reference for similar roadway support.
Asunto(s)
Minas de Carbón/normas , Carbón Mineral/análisis , Ingeniería/normas , Modelos Teóricos , Contaminantes del Suelo/análisis , HumanosRESUMEN
Inner Mongolian cheese is a traditional dairy product in China. It is produced without rennet, using naturally acidified milk that is simmered to achieve whey separation. In order to analyse the impact of simmering on the microbial community structure, high-throughput sequencing was performed to obtain bacterial 16S rRNA sequences from cheeses from the Ordos (ES), Ulanqab (WS), Horqin (KS) and Xilingol (XS) grasslands of Inner Mongolia. The relative abundance of an unexpected microorganism, Thermus thermophilus, ranged from 2% to 9%, which meant that its dominance was second only to that of lactic acid bacteria (LABs). Genome sequencing and fermentation validation were performed in T. thermophilus N-1 isolated from the Ordos, and it was determined that T. thermophilus N-1 could ingest and metabolise lactose in milk to produce lactate during the simmering process. T. thermophilus N-1 could also produce acetate, propionate, citrate and other organic acids through a unique acetate production pathway and a complete propionate production pathway and TCA cycle, which may affect texture and flavour development in Inner Mongolian cheese. Simultaneously, the large amount of citrate produced by T. thermophilus N-1 provides a necessary carbon source for continuous fermentation by LABs after the simmering step. Therefore, T. thermophilus N-1 contributes to cheese fermentation as a predominant, thermophilic, assistant starter microorganism unique to Chinese Inner Mongolian cheese.
RESUMEN
An alkaliphilic actinomycete, designated HAJB-30 T, was isolated from a soda alkali-saline soil in Heilongjiang, Northeast China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HAJB-30 T was most closely related to type strains of the genus Phytoactinopolyspora with sequence similarities ranging between 93.5 and 98.9%. Strain HAJB-30 T grew at pH 8.0-11.0 (optimum pH 9.5-10.0) and in the presence of 0-7.0% NaCl (optimum 1.0-3.0%). Whole-cell hydrolysates of the isolate contained LL-diaminopimelic acid as the diagnostic diamino acid and mannose and rhamnose as diagnostic sugars. The major fatty acids identified were iso-C14:0, iso-C15:0, anteiso-C15:0, iso-C16:0 and anteiso-C17:0, while the menaquinone was MK-9(H4). The genome (6,589,901 bp), composed of 50 contigs, had a G + C content of 66.8%. Out of the 6074 predicted genes, 6020 were protein-coding genes, and 54 were ncRNAs. Digital DNA-DNA hybridization (dDDH) estimation and average nucleotide identity (ANI) of strain HAJB-30 T against genomes of the type strains of related species in the same family ranged between 19.7 and 22.0% and between 71.5 and 76.8%, respectively. From these results, it was concluded that strain HAJB-30 T possesses sufficient characteristics differentiated from all recognized Phytoactinopolyspora species, it is considered to be a novel species for which the name Phytoactinopolyspora limicola sp. nov. is proposed. The type strain is HAJB-30 T (= CGMCC 4.7591 T, = JCM 33694 T).
Asunto(s)
Actinobacteria/clasificación , Actinobacteria/fisiología , Microbiología del Suelo , Actinobacteria/química , Actinobacteria/genética , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/análisis , Ácidos Grasos/análisis , Genoma Fúngico/genética , Hibridación de Ácido Nucleico , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/química , Azúcares/análisis , Vitamina K 2/análisisRESUMEN
The nutrition and flavor of cheese are generated by the microbial community. Thus, horse milk cheese with unique nutrition and flavor, an increasingly popular local cheese of the Xinjiang Uygur Autonomous Region of China, is considered to have diverse and specific bacterial community. To verify this hypothesis, horse, cow, and goat milk cheese samples produced under the same environmental conditions and manufacturing process were collected, and the 16S rRNA gene was targeted to determine the bacterial population size and community composition by real-time quantitative PCR and high-throughput sequencing. The bacterial community of horse milk cheese had a significantly larger bacterial population size, greater species richness, and a more diverse composition than those of cow and goat milk cheeses. Unlike the absolute dominance of Lactococcus and Streptococcus in cow and goat milk cheeses, Lactobacillus and Streptococcus dominated the bacterial community as the starter lactic acid bacteria in horse milk cheese. Additionally, horse milk cheese also contains a higher abundance of unclassified secondary bacteria and specific secondary bacteria (e.g., Psychrobacter, Sulfurisoma, Halomonas, and Brevibacterium) than cow and goat milk cheeses. These abundant, diverse, and specific starter lactic acid bacteria and secondary bacteria may generate unique nutrition and flavor of horse milk cheese.
Asunto(s)
Bacterias/clasificación , Queso/microbiología , Alimentos Fermentados/microbiología , Microbiología de Alimentos , Leche/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Secuencia de Bases , Bovinos , China , ADN Bacteriano/genética , Cabras , Caballos , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , GustoRESUMEN
Three halophilic archaeal strains, YJ-53T, ZS-5 and DYF38, were isolated from marine solar salterns located in different provinces of China. The three strains formed a single cluster (99.7-99.8 and 97.9-99.2â% similarities, respectively) that was separate from the current two members of Salinigranum (96.7-98.0 and 89.8-92.9â% similarities, respectively) on the basis of 16S rRNA and rpoB' gene sequence comparisons and phylogenetic analysis. Diverse phenotypic characteristics differentiated strains YJ-53T, ZS-5 and DYF38 from Salinigranum rubrum GX10T and Salinigranum salinum YJ-50-S2T. The major polar lipids of isolated strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and two major glycolipids chromatographically identical to mannosyl glucosyl diether and sulfated mannosyl glucosyl diether, detected in the current members of Salinigranum. The OrthoANI and in silico DNA-DNA hybridization (DDH) values between the three strains were in the range of 97.7-98.4â% and 80.3-86.1 %, respectively, much higher than the threshold values proposed as species boundaries (average nucleotide identity 95-96â% and in silico DDH 70 %), revealing that the three strains represent one species. Results of comparative OrthoANI and in silico DDH analyses of the strains described in this study with validly described members of the genus Salinigranum supported that strains YJ-53T (=CGMCC 1.12860T=JCM 30238T), ZS-5 (=CGMCC 1.12867=JCM 30240) and DYF38 (=CGMCC 1.13779=JCM 33557) represent a novel species of the genus Salinigranum, for which the name Salinigranum halophilum sp. nov. is proposed.