RESUMEN
Although the combination of immunotherapy and radiotherapy (RT) for the treatment of malignant tumors has shown rapid development, the insight of how RT remodels the tumor microenvironment to prime antitumor immunity involves a complex interplay of cell types and signaling pathways, much of which remains to be elucidated. Four tumor samples were collected from the same abdominal wall metastasis site of the patient with gastric cancer at baseline and during fractionated RT for single-cell RNA and T-cell receptor sequencing. The Seurat analysis pipeline and immune receptor analysis were used to characterize the gastric cancer metastasis ecosystem and investigated its dynamic changes of cell proportion, cell functional profiles and cell-to-cell communication during RT. Immunohistochemical and immunofluorescent staining and bulk RNA sequencing were applied to validate the key results. We found tumor cells upregulated immune checkpoint genes in response to RT. The infiltration and clonal expansion of T lymphocytes declined within tumors undergoing irradiation. Moreover, RT led to the accumulation of proinflammatory macrophages and natural killer T cells with enhanced cytotoxic gene expression signature. In addition, subclusters of dendritic cells and endothelial cells showed decrease in the expression of antigen present features in post-RT samples. More ECM component secreted by myofibroblasts during RT. These findings indicate that RT induced the dynamics of the immune response that should be taken into consideration when designing and clinically implementing innovative multimodal cancer treatment regimens of different RT and immunotherapy approaches.
RESUMEN
BACKGROUND: Clinical trials support the efficacy of immune checkpoint blockades (ICBs) plus chemotherapy in a subset of patients with metastatic gastric cancer (mGC). To identify the determinants of response, we developed a TMEscore model to assess tumor microenvironment (TME), which was previously proven to be a biomarker for ICBs. METHODS: A reference database of TMEscore assays was established using PCR assay kits containing 30 TME genes. This multi-center prospective clinical trial (NCT#04850716) included patients with mGC who were administered ICB combined with chemotherapy as a first-line regimen. Eighty-six tumor samples extracted from five medical centers before treatment were used to estimate the TMEscore, PD-L1 (CPS), and mismatch repair deficiency. FINDINGS: The objective response rate (ORR) and median PFS of the cohort were 31.4% and six months. Enhanced ORR was observed in TMEscore-high mGC patients (ORR = 59%). The survival analysis demonstrated that high TMEscore was significantly associated with a more favorable PFS and OS. Moreover, TMEscore was found to be a predictive biomarker that surpassed MSI and CPS (AUC = 0.873, 0.511, and 0.524, respectively). By integrating the TMEscore and clinical variables, the fused model further enhances the predictive efficiency and translational application in a clinical setting. CONCLUSIONS: This prospective clinical study indicates that the TMEscore assay is a robust biomarker for screening patients with mGC who may derive survival benefits from ICB plus chemotherapy. FUNDING: Guangdong Basic and Applied Basic Research Foundation (2023A1515011214), Science and Technology Program of Guangzhou (202206080011), and Guangzhou Science and Technology Project (2023A03J0722 and 2023A04J2357).
RESUMEN
Wound healing is a dynamic process involving the timely transition of organized phases. However, infected wounds often experience prolonged inflammation due to microbial overload. Thus, addressing the viable treatment needs across different healing stages is a critical challenge in wound management. Herein, a novel core-shell microneedle (CSMN) patch is designed for the sequential delivery of tannic acid-magnesium (TA-Mg) complexes and extracellular vesicles from Lactobacillus druckerii (LDEVs). Upon application to infected sites, CSMN@TA-Mg/LDEV releases TA-Mg first to counteract pathogenic overload and reduce reactive oxygen species (ROS), aiding the transition to proliferative phase. Subsequently, the sustained release of LDEVs enhances the activities of keratinocytes and fibroblasts, promotes vascularization, and modulates the collagen deposition. Notably, dynamic track of microbial composition demonstrates that CSMN@TA-Mg/LDEV can both inhibit the aggressive pathogen and increase the microbial diversity at wound sites. Functional analysis further highlights the potential of CSMN@TA-Mg/LDEV in facilitating wound healing and skin barrier restoration. Moreover, it is confirmed that CSMN@TA-Mg/LDEV can accelerate wound closure and improve post-recovery skin quality in the murine infected wound. Conclusively, this innovative CSMN patch offers a rapid and high-quality alternative treatment for infected wounds and emphasizes the significance of microbial homeostasis.
RESUMEN
Psoriasis is a chronic skin inflammation influenced by dysregulated skin microbiota, with the role of microbiota in psoriasis gaining increasing prominence. Bacterial extracellular vesicles (bEVs) serve as crucial regulators in the interaction between hosts and microbiota. However, the mechanism underlying the therapeutic potential of bEVs from commensal bacteria in psoriasis remains unclear. Here, we investigated the therapeutic role of Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs) in psoriasis treatment. To prolong the active duration of CA-EVs, we encapsulated them in gelatin methacrylate (GelMA) to fabricate hydrogel microspheres (CA-EVs@GHM) with sustained release properties. As GelMA degraded, CA-EVs were gradually released, maintaining a high concentration in mouse skin even 96 h post-treatment. In human keratinocyte cells (HaCaT), CA-EVs@GHM enhanced resistance to Staphylococcus aureus (S. aureus), promoted proliferation and migration of HaCaT cells exposed to S. aureus, and significantly reduced the expression of inflammatory genes such as interleukin (IL)-6 and C-X-C motif chemokine ligand 8 (CXCL8). In vivo, CA-EVs@GHM, more potent than CA-EVs alone, markedly attenuated proinflammatory gene expression, including tumor necrosis factor (TNF), Il6, Il17a, Il22 and Il23a in imiquimod (IMQ)-induced psoriasis-like mice, and restored skin barrier function. 16S rRNA sequencing revealed that CA-EVs@GHM might provide therapeutic effects against psoriasis by restoring microbiota diversity on the back skin of mice, reducing Staphylococcus colonization, and augmenting lipid metabolism. Furthermore, flow cytometry analysis showed that CA-EVs@GHM prevented the conversion of type 2 innate lymphoid cells (ILC2) to type 3 innate lymphoid cells (ILC3) in psoriasis-like mouse skin, reducing the pathogenic ILC3 population and suppressing the secretion of IL-17 and IL-22. In summary, our findings demonstrate that the long-term sustained release of CA-EVs alleviated psoriasis symptoms by controlling the transformation of innate lymphoid cells (ILCs) subgroups and restoring skin microbiota homeostasis, thus offering a promising therapy for psoriasis treatment. STATEMENT OF SIGNIFICANCE: Cutibacterium acnes, which is reduced in psoriasis skin, has been reported to promote skin homeostasis by regulating immune balance. Compared to live bacteria, bacterial extracellular vesicles (bEVs) are less prone to toxicity and safety concerns. bEVs play a pivotal role in maintaining bacterial homeostasis and modulating the immune system. However,bEVs without sustained release materials are unable to function continuously in chronic diseases. Therefore, we utilized hydrogel microspheres to encapsulate Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs), enabling long term sustained release. Our findings indicate that, CA-EVs loaded gelatin methacrylate hydrogel microspheres (CA-EVs@GHM) showed superior therapeutic effects in treating psoriasis compared to CA-EVs. CA-EVs@GHM exhibited a more significant regulation of pathological type 3 innate lymphoid cells (ILC3) and skin microbiota, providing a promising approach for microbiota-derived extracellular vesicle therapy in the treatment of skin inflammation.
Asunto(s)
Vesículas Extracelulares , Hidrogeles , Linfocitos , Microesferas , Psoriasis , Vesículas Extracelulares/metabolismo , Animales , Humanos , Psoriasis/patología , Psoriasis/inmunología , Psoriasis/terapia , Psoriasis/microbiología , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Linfocitos/inmunología , Linfocitos/metabolismo , Inmunidad Innata/efectos de los fármacos , Staphylococcus aureus , Células HaCaTRESUMEN
Immune checkpoint blockade has led to breakthroughs in the treatment of advanced gastric cancer. However, the prominent heterogeneity in gastric cancer, notably the heterogeneity of the tumor microenvironment, highlights the idea that the antitumor response is a reflection of multifactorial interactions. Through transcriptomic analysis and dynamic plasma sample analysis, we identified a metabolic "face-off" mechanism within the tumor microenvironment, as shown by the dual prognostic significance of nicotinamide metabolism. Specifically, macrophages and fibroblasts expressing the rate-limiting enzymes nicotinamide phosphoribosyltransferase and nicotinamide N-methyltransferase, respectively, regulate the nicotinamide/1-methylnicotinamide ratio and CD8+ T cell function. Mechanistically, nicotinamide N-methyltransferase is transcriptionally activated by the NOTCH pathway transcription factor RBP-J and is further inhibited by macrophage-derived extracellular vesicles containing nicotinamide phosphoribosyltransferase via the SIRT1/NICD axis. Manipulating nicotinamide metabolism through autologous injection of extracellular vesicles restored CD8+ T cell cytotoxicity and the anti-PD-1 response in gastric cancer.
Asunto(s)
Macrófagos , Niacinamida , Nicotinamida Fosforribosiltransferasa , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Humanos , Macrófagos/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacología , Nicotinamida Fosforribosiltransferasa/metabolismo , Animales , Ratones , Fibroblastos/metabolismo , Nicotinamida N-Metiltransferasa/metabolismo , Línea Celular Tumoral , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Femenino , Masculino , Vesículas Extracelulares/metabolismoRESUMEN
Recent findings have suggested that solute carrier (SLC) transporters play an important role in tumor development and progression, and alterations in the expression of individual SLC genes are critical for fulfilling the heightened metabolic requirements of cancerous cells. However, the global influence of the co-expression pattern of SLC transporters on the clinical stratification and characteristics of the tumor microenvironment (TME) remains unexplored. In this study, we identified five SLC gene subtypes based on transcriptome co-expression patterns of 187 SLC transporters by consensus clustering analysis. These subtypes, which were characterized by distinct TME and biological characteristics, were successfully employed for prognostic and chemotherapy response prediction in colon cancer patients, as well as demonstrated associations with immunotherapy benefits. Then, we generated an SLC score model comprising 113 genes to quantify SLC gene co-expression patterns and validated it as an independent prognostic factor and drug response predictor in several independent colon cancer cohorts. Patients with a high SLC score possessed distinct characteristics of copy number variation, genomic mutations, DNA methylation, and indicated an SLC-S2 subtype, which was characterized by strong stromal cell infiltration, stromal pathway activation, poor prognosis, and low predicted fluorouracil and immunotherapeutic responses. Furthermore, the analysis of the Cancer Therapeutics Response Portal database revealed that inhibitors targeting PI3K catalytic subunits could serve as promising chemosensitizing agents for individuals exhibiting high SLC scores. In conclusion, the co-expression patterns of SLC transporters aided the disease classification, and the SLC score proved to be a reliable tool for distinguishing SLC gene subtypes and guiding precise treatment in patients with colon cancer.
RESUMEN
Insecticides have been known to reduce the predation efficacy of natural enemies. However, the mechanism of the sublethal effect of insecticides on the functional response of predators remains unclear. This study investigated the sublethal effects of the broad-spectrum insecticide chlorpyrifos on the predatory bug Eocanthecona furcellata (Wolff), which is a potential biological control agent against pests in integrated pest management (IPM) programs. After exposure to a sublethal concentration of chlorpyrifos, the predation capacity and the maximum predatory number of E. furcellata increased by 11.27 and 15.26%, respectively, with prey handling time decreased by 15.07%, and the searching efficiency increased by 5.88-12.61%. Additionally, the intraspecific interference effect was enhanced. Glutathione S-transferase (GST) activity was significantly decreased after 12- to 60-h treatment. At 12 h after treatment, the expression levels of GST gene (GST3), acetylcholinesterase gene (AChE), and cytochrome P450 monooxygenasegene (cyp6B1) were significantly up-regulated by 1.47-, 1.48-, and 2.05-fold, respectively, while GST gene (GST1) was significantly down-regulated by 16.67-fold. These results indicated that a sublethal chlorpyrifos concentration inhibited the GST activity and stimulated the predatory behavior of E. furcellata. The results will advance our understanding of the toxicological mechanism of predatory stink bug responses to insecticides and predict chlorpyrifos' effects on predators in an IPM program.
Asunto(s)
Cloropirifos , Hemípteros , Heterópteros , Insecticidas , Animales , Cloropirifos/toxicidad , Insecticidas/farmacología , Conducta Predatoria , Acetilcolinesterasa/farmacología , Heterópteros/fisiologíaRESUMEN
Allatostatin (AS) or Allatotropin (AT) is a class of insect short neuropeptide F (sNPF) that affects insect growth and development by inhibiting or promote the synthesis of juvenile hormone (JH) in different insects. III-2 is a novel sNPF analog derived from a group of nitroaromatic groups connected by different amino acids. In this study, we found that III-2 showed high insecticidal activity against S. frugiperda larvae with a LC50 of 18.7 mg L-1. As demonstrated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), III-2 particularly facilitated JH III and hindered 20E synthesis in S. frugiperda. The results of RNA-Seq and quantitative real-time polymerase chain reaction (qPCR) showed that III-2 treatment promoted the expression of key genes such as SfCYP15C1 in JH synthesis pathway and inhibited the expression of SfCYP314A1 and other genes in the 20E synthetic pathway. Significant differences were also observed in the expression of the genes related to cuticle formation. We report for the first time that sNPF compounds specifically interfere with the synthesis and secretion of a certain JH in insects, thus affecting the ecdysis and growth of insects, and leading to death. This study may provide a new plant conservation concept for us to seek the targeted control of certain insects based on specific interference with different JH.
Asunto(s)
Hormonas Juveniles , Espectrometría de Masas en Tándem , Animales , Spodoptera/genética , Spodoptera/metabolismo , Cromatografía Liquida , Hormonas Juveniles/farmacología , Hormonas Juveniles/metabolismo , Larva/metabolismo , InsectosRESUMEN
Solute carrier (SLC) transporters play a dual role in the occurrence and progression of tumours by acting as both suppressors and promoters. However, the overall impact of SLC transcriptome signatures on the tumour microenvironment, biological behaviour and clinical stratification of gastric cancer has not been thoroughly investigated. Therefore, we comprehensively analysed the expression profiles of the SLC transporter family members to identify novel molecular subtypes in gastric cancer. We identified two distinct SLC subtypes, SLC-S1 and SLC-S2, using non-negative matrix factorization. These subtypes were markedly linked with the tumour microenvironment landscape, biological pathway activation and distinct clinical features of gastric cancer. Furthermore, a new scoring model, the SLC score, was developed to quantify the SLC subtypes. High SLC scores indicated a pattern of 'SLC-S2', characterized by stromal infiltration and activation, poor prognosis and insensitivity to chemotherapy and immunotherapy, but high sensitivity to imatinib. The SLC score could serve as a supplement to the Tumour Node Metastasis (TNM) staging system to guide personalized treatment strategies and predict prognosis for patients with gastric cancer.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Inmunoterapia , Microambiente Tumoral/genéticaRESUMEN
Herbicide resistance is rapidly emerging in Cyperus difformis in rice fields across China. The response of a C. difformis population GX-35 was tested against five acetolactate synthase (ALS)-inhibiting herbicides, auxin herbicide MCPA and photosynthesis II (PSII)-inhibitor bentazone. Population GX-35 evolved multiple resistance to ALS-inhibiting herbicides (penoxsulam, bispyribacsodium, pyrazosulfuron-ethyl, halosulfuron-methly and imazapic) and auxin herbicide MCPA, with resistance levels of 140-, 1253-, 578-, 18-, 13-, and 21-fold, respectively, compared to the susceptible population. In this population, ALS gene expression was similar to that of the susceptible population. However, an Asp376Glu mutation in ALS gene was observed, leading to reduced inhibition of in-vitro ALS activities by five ALS-inhibiting herbicides. Furthermore, CYP71D8, CYP77A3, CYP78A5 and three ABC transporter genes (cluster-14412.23067, cluster-14412.25321, and cluster-14412.24716) over-expressed in absence of penoxsulam. On the other hand, an UGT73C1 and an ABC transporter (cluster-14412.25038) were induced by penoxsulam. Additionally, both over-expression and induction were observed for CYP74, CYP71A1, UGT88A1 and an ABC transporter (cluster-14412.21723). The GX-35 population has indeed evolved multiple herbicide resistance in China. Therefore, a diverse range of weed control tactics should be implemented in rice field.
Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Acetolactato Sintasa , Cyperus , Herbicidas , Oryza , Oryza/genética , Resistencia a los Herbicidas/genética , China , Transportadoras de Casetes de Unión a ATP , Acetolactato Sintasa/genética , Herbicidas/farmacología , Ácidos IndolacéticosRESUMEN
Epigenetic modification is involved in tumorigenesis and cancer progression. We developed an epigenetic modification-associated molecular classification of gastric cancer (GC) to identify signature genes that accurately predict prognosis and the efficacy of immunotherapy. Least absolute shrinkage and selection operator and multivariate Cox regression analysis were conducted to develop an epigenetic modification-associated molecular classification. We investigated the significance of PIP4P2, an independent prognostic factor of the classification system, in predicting the prognosis and immunotherapy efficacy of patients with GC. The epigenetic modification-associated molecular classification was highly associated with the clinicopathological characteristics of patients and the existing classification of GC. PIP4P2 was highly expressed in GC tissue and tumor-associated macrophages. High PIP4P2 expression in GC tissue-induced tumor progression by activating PI3K/AKT signal transduction had a negative impact on immunotherapy efficacy. High expression of PIP4P2 in macrophages was correlated with poor prognosis in patients with GC. PIP4P2 is an independent unfavorable prognostic factor of epigenetic modification-associated molecular classification, is involved in tumorigenic progression, and is essential for assessing the prognosis and immunotherapy efficacy of GC.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Fosfatidilinositol 3-Quinasas , Carcinogénesis , Epigénesis Genética , Inmunoterapia , PronósticoRESUMEN
Small molecular organic acids (SMOAs) in root exudates are critical for plant-microbe interaction, especially under environmental stresses. However, the dominant organic acids driving the process and promoting the colonization are unclear. Here, using a target metabolomics, 20 main SMOAs of rice root exudates were identified and analyzed in control and 10 mg/L thiamethoxam-treated groups. The composition of these SMOAs differed significantly between the two treatments. Among which, malic acid, citric acid, succinic acid, and proline induced a chemotactic response, swimming ability, and biofilm formation of Enterobacter cloacae TMX-6 in a dose-dependent manner. The maximal chemotactic response of TMX-6 was induced by proline at 10 mg/L, and a strong chemotactic response was even observed at 0.01 mg/L. The recruitment assay confirmed that the addition of these four compounds promoted the colonization of TMX-6. The results provide insight for directional regulation of plant-microbe interactions for beneficial outcomes.
Asunto(s)
Oryza , Plantones , Enterobacter cloacae , Compuestos Orgánicos , Ácidos , Exudados y Transudados , Prolina , Raíces de PlantasRESUMEN
BACKGROUND: Fruit flies are important economic pests of fruits, vegetables, and nuts all over the world. In this study, a permanent ecological trap, which was created by the ovicidal effect of phytogenic hydrogen cyanide (HCN) liberated from passion fruits due to oviposition by fruit flies and can be used in the pest management, were determined. RESULTS: Observation of fruit fly eggs in Passiflora within the passion fruit cultivation region in southern China, from Aug 2019 to Oct 2020 showed that the exotic Passiflora attracted the native fruit flies to oviposit, but the eggs could not hatch. Using classical staging to categorize embryonic development and fumigation assays, we show that oviposition by fruit fly on passion fruits, release HCN from the cyanogenic mesocarp. Exposure of the eggs to HCN causes arrest of embryonic development and finally the death of eggs. CONCLUSION: Our results reveal that the life cycle of fruit fly in Passiflora is interrupted at the egg stage. Consequently, we predict that this ecological trap may be permanent. Extensive cultivation of the Passiflora vine as a dead-end trap crop may be an effective avenue to reduce populations of fruit fly pests. © 2023 Society of Chemical Industry.
Asunto(s)
Passiflora , Animales , Femenino , Frutas , Drosophila , Oviposición , ChinaRESUMEN
RNA methylation normally inhibits the self-recognition and immunogenicity of RNA. As such, it is likely an important inhibitor of cancer immune recognition in the tumor microenvironment, but how N6-methyladenosine (m6A) affects prognosis and treatment response remains unknown. In eight independent melanoma cohorts (1,564 patients), the modification patterns of 21 m6A gene signatures were systematically correlated with the immune cell infiltration of melanoma tumor microenvironment. m6A modification patterns for each patient were quantified using the principal component analysis method, yielding an m6Ascore that reflects the abundance of m6A RNA modifications. Two different m6A modification patterns were observed in patients with melanoma, separated into high and low m6Ascores that correlated with survival and treatment response. Low m6Ascores were characterized by an immune-inflamed phenotype, with 61.1% 5-year survival. High m6Ascores were characterized by an immune-excluded phenotype, with 52.2% 5-year survival. Importantly, lower m6Ascores correlated with more sensitive anti-PD-1 and anti-CTLA4 treatment responses, with 90% of patients with low m6Ascore responding, whereas 10% of those with high m6Ascore nonresponding (in cohort GSE63557). At single-cell and spatial transcriptome resolution, m6Ascore reflects melanoma malignant progression, immune exhaustion, and resistance to immune checkpoint blockade therapy. Hence, the m6Ascore correlates to an important facet of tumor immune escape as a tool for personalized medicine to guide immunotherapy in patients with melanoma.
Asunto(s)
Melanoma , Humanos , Metilación , Melanoma/genética , Melanoma/terapia , Inmunoterapia , ARN/genética , Adenosina , Microambiente Tumoral/genéticaRESUMEN
Tissue injury induces metabolic changes in stem cells, which likely modulate regeneration. Using a model of organ regeneration called wound-induced hair follicle neogenesis (WIHN), we identified skin-resident bacteria as key modulators of keratinocyte metabolism, demonstrating a positive correlation between bacterial load, glutamine metabolism, and regeneration. Specifically, through comprehensive multiomic analysis and single-cell RNA sequencing in murine skin, we show that bacterially induced hypoxia drives increased glutamine metabolism in keratinocytes with attendant enhancement of skin and hair follicle regeneration. In human skin wounds, topical broad-spectrum antibiotics inhibit glutamine production and are partially responsible for reduced healing. These findings reveal a conserved and coherent physiologic context in which bacterially induced metabolic changes improve the tolerance of stem cells to damage and enhance regenerative capacity. This unexpected proregenerative modulation of metabolism by the skin microbiome in both mice and humans suggests important methods for enhancing regeneration after injury.
Asunto(s)
Glutamina , Folículo Piloso , Animales , Humanos , Ratones , Glutamina/metabolismo , Queratinocitos , Regeneración , Piel/metabolismo , Cicatrización de Heridas , MicrobiotaRESUMEN
Despite the connection of secretory cells to distinct mucus-containing colon cancer histological subtypes and the interaction of secretory cells with immune cells in the pathogenesis of intestinal inflammatory diseases, whether the secretory cell signatures are associated with tumor microenvironment (TME) heterogeneity and can aid in colon cancer patient classification have not been investigated. Here, by performing the principal component analysis and consensus clustering analysis, we identified four distinct expression patterns based on secretory cell signatures which were significantly associated with different clinical behaviors, TME landscape, pathway activation, genomic mutations, and DNA methylation characteristics. Subsequently, a 'SCS score' model was constructed. The high SCS score indicated a pattern of 'secretory cell subtype 2', which was characterized by stromal infiltration and activation, and predicted poor prognosis and low sensitivity to fluorouracil-based chemotherapy and immunotherapy, but high sensitivity to PI3K catalytic subunit inhibitors. In conclusion, our study comprehensively uncovered the tumor heterogeneity related to secretory cell signature expression patterns. Moreover, the SCS score can supplement routine histopathological assessments to guide personalized therapeutic strategies in colon cancer patients.
Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Neoplasias del Colon/genética , Microambiente Tumoral/genética , Fluorouracilo , Análisis por ConglomeradosRESUMEN
BACKGROUND: Echinochloa crus-galli var. zelayensis is a troublesome weed in rice fields and can be controlled by using quinclorac. However, over-reliance on quinclorac has resulted in resistant (R) barnyardgrass, which differs significantly in its ability to transport quinclorac compared to susceptible (S) barnyardgrass. This study aimed to investigate the underlying mechanisms for this different translocation between R and S barnyardgrass. RESULTS: Larger amount of quinclorac was transferred from shoots to roots in R compared to S barnyardgrass. After 1 day of quinclorac [300 g active ingredient (a.i.) ha-1 ] foliar treatment, its content in shoots of R was 81.92% of that in S barnyardgrass; correspondingly, in roots of R was 1.17 fold of that in S barnyardgrass. RNA-sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the expression levels of PIPs belonging to aquaporins (AQPs) in R were higher than in S barnyardgrass, with or without quinclorac treatment. With co-application of quinclorac and AQPs inhibitors [mercury(II) chloride (HgCl2 )] treatment, even though the expression levels of PIPs and the transport rates of quinclorac were both suppressed in R and S barnyardgrass, this process was less pronounced in R than in S barnyardgrass. CONCLUSION: This report provides clear evidence that higher PIPs expression results in rapid quinclorac translocation from shoots to roots and reduces the quinclorac accumulation in the shoot meristems in R barnyardgrass, thus reducing the control efficacy of quinclorac. © 2022 Society of Chemical Industry.
Asunto(s)
Echinochloa , Echinochloa/genéticaRESUMEN
Background: Cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) are critical for immune suppression by restricting immune cell infiltration in the tumor stromal zones from penetrating tumor islands and changing their function status, particularly for CD8+ T cells. However, assessing and quantifying the impact of CAFs on immune cells and investigating how this impact is related to clinical outcomes, especially the efficacy of immunotherapy, remain unclear. Materials and methods: The TME was characterized using immunohistochemical (IHC) analysis using a large-scale sample size of gene expression profiles. The CD8+ T cell/CAF ratio (CFR) association with survival was investigated in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) lung cancer cohorts. The correlation between CFR and immunotherapeutic efficacy was computed in five independent cohorts. The correlation between CFR and objective response rates (ORRs) following pembrolizumab monotherapy was investigated in 20 solid tumor types. To facilitate clinical translation, the IHC-detected CD8/α-SMA ratio was applied as an immunotherapeutic predictive biomarker in a real-world lung cancer cohort. Results: Compared with normal tissue, CAFs were enriched in cancer tissue, and the amount of CAFs was overwhelmingly higher than that in other immune cells. CAFs are positively correlated with the extent of immune infiltration. A higher CFR was strongly associated with improved survival in lung cancer, melanoma, and urothelial cancer immunotherapy cohorts. Within most cohorts, there was no clear evidence for an association between CFR and programmed death-ligand 1 (PD-L1) or tumor mutational burden (TMB). Compared with TMB and PD-L1, a higher correlation coefficient was observed between CFR and the ORR following pembrolizumab monotherapy in 20 solid tumor types (Spearman's r = 0.69 vs. 0.44 and 0.21). In a real-world cohort, patients with a high CFR detected by IHC benefited considerably from immunotherapy as compared with those with a low CFR (hazard ratio, 0.37; 95% confidence interval, 0.19-0.75; p < 0.001). Conclusions: CFR is a newly found and simple parameter that can be used for identifying patients unlikely to benefit from immunotherapy. Future studies are needed to confirm this finding.
Asunto(s)
Linfocitos T CD8-positivos , Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Antígeno B7-H1/inmunología , Biomarcadores de Tumor/inmunología , Fibroblastos Asociados al Cáncer/inmunología , Linfocitos T CD8-positivos/inmunología , Factores Inmunológicos/inmunología , Factores Inmunológicos/uso terapéutico , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Pronóstico , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Valor Predictivo de las PruebasRESUMEN
Bensulfuron methyl (BSM) is a widely used sulfonylurea herbicide in agriculture. However, the large-scale BSM application causes severe environmental problems. Biodegradation is an important way to remove BSM residue. In this study, an endophytic bacterium strain CD3, newly isolated from barnyard grass (Echinochloa crus-galli), could effectively degrade BSM in mineral salt medium. The strain CD3 was identified as Proteus sp. based on the phenotypic features, physiological biochemical characteristics, and 16S rRNA gene sequence. The suitable conditions for BSM degradation by this strain were 20-40°C, pH 6-8, the initial concertation of 12.5-200 mg L-1 with 10 g L-1 glucose as additional carbon source. The endophyte was capable of degrading above 98% BSM within 7 d under the optimal degrading conditions. Furthermore, strain CD3 could also effectively degrade other sulfonylurea herbicides including nicosulfuron, halosulfuron methyl, pyrazosulfuron, and ethoxysulfuron. Extracellular enzyme played a critical role on the BSM degradation by strain CD3. Two degrading metabolites were detected and identified by using liquid chromatography-mass spectrometry (LC-MS). The biochemical degradation pathways of BSM by this endophyte were proposed. The genomic analysis of strain CD3 revealed the presence of putative hydrolase or esterase genes involved in BSM degradation, suggesting that a novel degradation enzyme for BSM was present in this BSM-degrading Proteus sp. CD3. The results of this research suggested that strain CD3 may have potential for using in the bioremediation of BSM-contaminated environment.
RESUMEN
Bruceine D is a natural quassinoid, which was successfully isolated in our research group from the residue of Brucea javanica (L.) seeds. Our previous research showed that Bruceine D prevented Bidens pilosa L. seed germination by suppressing the activity of key enzymes and the expression levels of key genes involved in the phenylpropanoid biosynthesis pathway. In this study, integrated analyses of non-targeted metabolomic and transcriptomic were performed. A total of 356 different accumulated metabolites (DAMs) were identified, and KEGG pathway analyses revealed that most of these DAMs were involved in phenylpropanoid biosynthesis. The decreased expression of ADTs and content of L-phenylalanine implicates that Bruceine D may suppress the downstream phenylpropanoid biosynthesis pathway by disrupting primary metabolism, that is, the phenylalanine biosynthesis pathway, thus inhibiting the final products, resulting in the interruption of B. pilosa seed germination. These results suggest that Bruceine D may inhibit the B. pilosa seed germination by suppressing phenylpropanoid biosynthesis through acting on ADTs.