RESUMEN
The visual system relies on both motion and form signals to perceive the direction of self-motion, yet the coordination mechanisms between these two elements in this process remain elusive. In the current study, we employed heading perception as a model to delve into the interaction characteristics between form and motion signals. We recorded the responses of neurons in the ventral intraparietal area (VIP), an area with strong heading selectivity, to motion-only, form-only, and combined stimuli of simulated self-motion. Intriguingly, VIP neurons responded to form-only cues defined by Glass patterns, although they exhibited no tuning selectivity. In combined condition, introducing a small offset between form and motion cues significantly enhanced neuronal sensitivity to motion cues. However, with a larger offset, the enhancement effect on sensitivity became comparatively smaller. Moreover, we observed that the influence of form cues on neuronal response to motion cues is more pronounced in the later stage (1-2 s) of stimulation, with a relatively smaller effect in the early stage (0-1 s). This suggests a dynamic interaction between motion and form cues over time for heading perception. In summary, our study uncovered that in area VIP, form information plays a role in constructing accurate self-motion perception. This adds valuable insights into the complex dynamics of how the brain integrates motion and form cues for the perception of one's own movements.
RESUMEN
Plant vegetative organs present great potential for lipid storage, with tubers of Cyperus esculentus as a unique example. To investigate the genome and transcriptomic features of C. esculentus and related species, we sequenced and assembled the C. esculentus genome at the contig level. Through a comparative study of high-quality transcriptomes across 36 tissues from high-oil and intermediate-oil C. esculentus and low-oil Cyperus rotundus, we identified potential genes and regulatory networks related to tuber oil accumulation. First, we identified tuber-specific genes in two C. esculentus cultivars. Second, genes involved in fatty acid (FA) biosynthesis, triacylglycerol synthesis, and TAG packaging presented increased activity in the later stages of tuber development. Notably, tubers with high oil contents presented higher levels of these genes than those with intermediate oil contents did, whereas tubers with low oil contents presented minimal gene expression. Notably, a large fragment of the FA biosynthesis rate-limiting enzyme-encoding gene BCCP1 was missing from the C. rotundus transcript, which might be responsible for blocking FA biosynthesis in its tubers. WGCNA pinpointed a gene module linked to tuber oil accumulation, with a coexpression network involving the transcription factors WRI1, MYB4, and bHLH68. The ethylene-related genes in this module suggest a role for ethylene signaling in oil accumulation, which is supported by the finding that ethylene (ETH) treatment increases the oil content in C. esculentus tubers. This study identified potential genes and networks associated with tuber oil accumulation in C. esculentus, highlighting the role of specific genes, transcription factors, and ethylene signaling in this process.
Asunto(s)
Cyperus , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Aceites de Plantas , Tubérculos de la Planta , Cyperus/genética , Cyperus/metabolismo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/genética , Aceites de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Genes de Plantas , Ácidos Grasos/metabolismoRESUMEN
Flexible polyurethane foam (FPUF) is a ubiquitous material utilized in furniture cushions, mattresses, and various technical applications. Despite the widespread use, FPUF faces challenges in maintaining long-lasting flame retardancy and aging resistance, particularly in harsh environments, while retaining mechanical robustness. Here, we present a novel approach to address these issues by enhancing FPUF through multiple free-radical-trapping and hydrogen-bonding mechanisms. A hindered amine phosphorus-containing polyol (DTAP) was designed and chemically introduced into FPUF. The distinctive synergy between hindered amine and phosphorus-containing structures enables the formation of multiple hydrogen bonds with urethane, while also effectively capturing free radicals across a broad temperature spectrum. As a result, incorporating only 5.1 wt% of DTAP led to the material successfully passing vertical burning tests and witnessing notable enhancements in tensile strength, elongation at break, and tear strength. Even after enduring accelerated thermal aging for 168 hours, the foam maintained exceptional flame retardancy and mechanical properties. This study offers novel insights into material enhancement, simultaneously achieving outstanding long-lasting flame retardancy, toughness, and anti-aging performance.
RESUMEN
Passive radiant cooling is a potentially sustainable thermal management strategy amid escalating global climate change. However, petrochemical-derived cooling materials often face efficiency challenges owing to the absorption of sunlight. We present an intrinsic photoluminescent biomass aerogel, which has a visible light reflectance exceeding 100%, that yields a large cooling effect. We discovered that DNA and gelatin aggregation into an ordered layered aerogel achieves a solar-weighted reflectance of 104.0% in visible light regions through fluorescence and phosphorescence. The cooling effect can reduce ambient temperatures by 16.0°C under high solar irradiance. In addition, the aerogel, efficiently produced at scale through water-welding, displays high reparability, recyclability, and biodegradability, completing an environmentally conscious life cycle. This biomass photoluminescence material is another tool for designing next-generation sustainable cooling materials.
RESUMEN
The excessive formation and release of neutrophil extracellular traps (NETs) in sepsis may represent a substantial mechanism contributing to multiorgan damage, which is associated with a poor prognosis. However, the precise role of NETs in mediating the transition from innate immunity to adaptive immunity during the progression of inflammation and sepsis remains incompletely elucidated. In this study, we provide evidence that, despite a reduction in the number of CD4+ T cells in the late stage of sepsis, there is a notable upregulation in the proportion of Tregs. Mechanistically, we have identified that NETs can induce metabolic reprogramming of naive CD4+ T cells through the Akt/mTOR/SREBP2 pathway, resulting in enhanced cholesterol metabolism, thereby promoting their conversion into Tregs and augmenting their functional capacity. Collectively, our findings highlight the potential therapeutic strategy of targeting intracellular cholesterol normalization for the management of immunosuppressed patients with sepsis.
Asunto(s)
Trampas Extracelulares , Sepsis , Linfocitos T Reguladores , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Sepsis/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Humanos , Ratones , Animales , Neutrófilos/inmunología , Neutrófilos/metabolismo , Masculino , Serina-Treonina Quinasas TOR/metabolismo , Colesterol/metabolismo , Tolerancia Inmunológica/inmunología , Femenino , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Intussusception, a common cause of abdominal pain in children, often lacks clear underlying causes and is mostly idiopathic. Recurrence, though rare, raises clinical concerns, with rates escalating after each episode. Factors like pathological lead points and Henoch-Schönlein purpura (HSP) are associated with recurrent cases. On the other hand, the prevalence of Helicobacter pylori (H. pylori), often asymptomatic, in children has been declining. Although its infection is reported to be linked with HSP, its role in recurrent intussusception remains unexplored. Further research is needed to understand the interplay among H. pylori (culprit pathogen), HSP (trigger), and intractable intussusception so as to develop effective management strategies. CASE PRESENTATION: A two-year-old girl experienced four atypical episodes of intussusception at distinct locations, which later coincided with HSP. Despite treatment with steroids, recurrent intussusception persisted, suggesting that HSP itself was not a major cause for intractable presentations. Subsequent identification of H. pylori infection and treatment with triple therapy resulted in complete resolution of her recalcitrant intussusception. CONCLUSION: This instructive case underscored a sequence wherein H. pylori infection triggered HSP, subsequently resulting in recurrent intussusception. While H. pylori infection is not common in young children, the coexistence of intractable intussusception and steroid-resistant recurrent HSP necessitates consideration of H. pylori infection as a potential underlying pathogen.
RESUMEN
Light plays a pivotal role in regulating anthocyanin biosynthesis in plants, and the early light-responsive signals that initiate anthocyanin biosynthesis remain to be elucidated. In this study, we showed that the anthocyanin biosynthesis in Eucalyptus is hypersensitive to increased light intensity. The combined transcriptomic and metabolomic analyses were conducted on Eucalyptus leaves after moderate (ML; 100 µmol m-2 s-1) and high (HL; 300 µmol m-2 s-1) light intensity treatments. The results identified 1940, 1096, 1173, and 2756 differentially expressed genes at 6, 12, 24, and 36 h after HL treatment, respectively. The metabolomic results revealed the primary anthocyanin types, and other differentially accumulated flavonoids and phenylpropane intermediates that were produced in response to HL, which well aligned with the transcriptome results. Moreover, biochemical analysis showed that HL inhibited peroxidase activity and increased the ROS level in Eucalyptus leaves. ROS depletion through co-application of the antioxidants rutin, uric acid, and melatonin significantly reduced, and even abolished, anthocyanin biosynthesis induced by HL treatment. Additionally, exogenous application of hydrogen peroxide efficiently induced anthocyanin biosynthesis within 24 h, even under ML conditions, suggesting that ROS played a major role in activating anthocyanin biosynthesis. A HL-responsive MYB transcription factor EgrMYB113 was identified to play an important role in regulating anthocyanin biosynthesis by targeting multiple anthocyanin biosynthesis genes. Additionally, the results demonstrated that gibberellic acid and sugar signaling contributed to HL-induced anthocyanin biosynthesis. Conclusively, these results suggested that HL triggers multiple signaling pathways to induce anthocyanin biosynthesis, with ROS acting as indispensable mediators in Eucalyptus.
Asunto(s)
Antocianinas , Eucalyptus , Luz , Especies Reactivas de Oxígeno , Eucalyptus/metabolismo , Eucalyptus/genética , Antocianinas/biosíntesis , Antocianinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismoRESUMEN
The development of strong sensitizing and Earth-abundant antenna molecules is highly desirable for CO2 reduction through artificial photosynthesis. Herein, a library of Zn-dipyrrin complexes (Z-1-Z-6) are rationally designed via precisely controlling their molecular configuration to optimize strong sensitizing Earth-abundant photosensitizers. Upon visible-light excitation, their special geometry enables intramolecular charge transfer to induce a charge-transfer state, which was first demonstrated to accept electrons from electron donors. The resulting long-lived reduced photosensitizer was confirmed to trigger consecutive intermolecular electron transfers for boosting CO2-to-CO conversion. Remarkably, the Earth-abundant catalytic system with Z-6 and Fe-catalyst exhibits outstanding performance with a turnover number of >20 000 and 29.7% quantum yield, representing excellent catalytic performance among the molecular catalytic systems and highly superior to that of noble-metal photosensitizer Ir(ppy)2(bpy)+ under similar conditions. Experimental and theoretical investigations comprehensively unveil the structure-activity relationship, opening up a new horizon for the development of Earth-abundant strong sensitizing chromophores for boosting artificial photosynthesis.
RESUMEN
Polyurethane (PU) foams, pivotal in modern life, face challenges suh as fire hazards and environmental waste burdens. The current reliance of PU on potentially ecotoxic halogen-/phosphorus-based flame retardants impedes large-scale material recycling. Here, our demonstrated controllable catalytic cracking strategy, using cesium salts, enables self-evolving recycling of flame-retardant PU. The incorporation of cesium citrates facilitates efficient urethane bond cleavage at low temperatures (160 °C), promoting effective recycling, while encouraging pyrolytic rearrangement of isocyanates into char at high temperatures (300 °C) for enhanced PU fire safety. Even in the absence of halogen/phosphorus components, this foam exhibits a substantial increase in ignition time (+258.8%) and a significant reduction in total smoke release (-79%). This flame-retardant foam can be easily recycled into high-quality polyol under mild conditions, 60 °C lower than that for the pure foam. Notably, the trace amounts of cesium gathered in recycled polyols stimulate the regenerated PU to undergo self-evolution, improving both flame-retardancy and mechanical properties. Our controllable catalytic cracking strategy paves the way for the self-evolutionary recycling of high-performance firefighting materials.
RESUMEN
The inherent flammability of most polymeric materials poses a significant fire hazard, leading to substantial property damage and loss of life. A universal flame-retardant protective coating is considered as a promising strategy to mitigate such risks; however, simultaneously achieving high transparency of the coatings remains a great challenge. Here, inspired by the moth eye effect, we designed a nanoporous structure into a protective coating that leverages a hydrophilic-hydrophobic interactive assembly facilitated by phosphoric acid protonated amino siloxane. The coating demonstrates robust adhesion to a diverse range of substrates, including but not limited to fabrics, foams, paper, and wood. As expected, its moth-eye-inspired nanoporous structure conferred a high visible light transparency of >97% and water vapor transmittance of 96%. The synergistic effect among phosphorus (P), nitrogen (N), and silicon (Si) largely enhanced the char-forming ability and restricted the decomposition of the coated substrates, which successfully endowed the coating with high fire-fighting performance. More importantly, for both flexible and rigid substrates, the coated samples all possessed great mechanical properties. This work provides a new insight for the design of protective coatings, particularly focusing on achieving high transparency.
RESUMEN
Jatropha curcas (J. curcas) is a perennial oil-seed plant with vigorous vegetative growth but relatively poor reproductive growth and low seed yield. Gibberellins (GAs) promotes flowering in most annual plants but inhibits flowering in many woody plants, including J. curcas. However, the underlying mechanisms of GA inhibits flowering in perennial woody plants remain unclear. Here, we found that overexpression of the GA biosynthesis gene JcGA20ox1 inhibits flowering in J. curcas and in J. curcas × J. integerrima hybrids. Consistent with this finding, overexpression of the GA catabolic gene JcGA2ox6 promotes flowering in J. curcas. qRTPCR revealed that inhibits floral transition by overexpressing JcGA20ox1 resulted from a decrease in the expression of JcFT and other flowering-related genes, which was restored by overexpressing JcFT in J. curcas. Overexpression of JcGA20ox1 or JcGA2ox6 reduced seed yield, but overexpression of JcFT significantly increased seed yield. Furthermore, hybridization experiments showed that the reduction in seed yield caused by overexpression of JcGA20ox1 or JcGA2ox6 was partially restored by the overexpression of JcFT. In addition, JcGA20ox1, JcGA2ox6 and JcFT were also found to be involved in the regulation of seed oil content and endosperm development. In conclusion, our study revealed that the inhibitory effect of GA on flowering is mediated through JcFT and demonstrated the effects of JcGA20ox1, JcGA2ox6 and JcFT on agronomic traits in J. curcas. This study also indicates the potential value of GA metabolism genes and JcFT in the breeding of new varieties of woody oil-seed plants.
Asunto(s)
Flores , Giberelinas , Jatropha , Proteínas de Plantas , Giberelinas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Jatropha/genética , Jatropha/metabolismo , Jatropha/crecimiento & desarrollo , Jatropha/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismoRESUMEN
BACKGROUND: Sepsis is a severe systemic inflammatory disorder manifested by a dysregulated immune response to infection and multi-organ failure. Numerous studies have shown that elevated ferritin levels exist as an essential feature during sepsis and are able to suggest patients' prognoses. At the same time, the specific mechanism of ferritin-induced inflammatory injury remains unclear. METHODS: Hyper-ferritin state during inflammation was performed by injecting ferritin into a mouse model and demonstrated that injection of ferritin could induce a systemic inflammatory response and increase neutrophil extracellular trap (NET) formation.Padi4-/-, Elane-/- and Cybb-/- mice were used for the NETs formation experiment. Western blot, immunofluorescence, ELISA, and flow cytometry examined the changes in NETs, inflammation, and related signaling pathways. RESULTS: Ferritin induces NET formation in a peptidylarginine deiminase 4 (PAD4), neutrophil elastase (NE), and reactive oxygen species (ROS)-dependent manner, thereby exacerbating the inflammatory response. Mechanistically, ferritin induces the expression of neutrophil macrophage scavenger receptor (MSR), which promotes the formation of NETs. Clinically, high levels of ferritin in patients with severe sepsis correlate with NETs-mediated cytokines storm and are proportional to the severity of sepsis-induced lung injury. CONCLUSIONS: In conclusion, we demonstrated that hyper-ferritin can induce systemic inflammation and increase NET formation in an MSR-dependent manner. This process relies on PAD4, NE, and ROS, further aggravating acute lung injury. In the clinic, high serum ferritin levels are associated with elevated NETs and worse lung injury, which suggests a poor prognosis for patients with sepsis. Our study indicated that targeting NETs or MSR could be a potential treatment to alleviate lung damage and systemic inflammation during sepsis. Video Abstract.
Asunto(s)
Lesión Pulmonar Aguda , Trampas Extracelulares , Sepsis , Humanos , Ratones , Animales , Trampas Extracelulares/metabolismo , Síndrome de Liberación de Citoquinas , Especies Reactivas de Oxígeno/metabolismo , Neutrófilos/metabolismo , Inflamación/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Lesión Pulmonar Aguda/metabolismo , Receptores Depuradores/metabolismoRESUMEN
The dorsomedial posterior parietal cortex (dmPPC) is part of a higher-cognition network implicated in elaborate processes underpinning memory formation, recollection, episode reconstruction, and temporal information processing. Neural coding for complex episodic processing is however under-documented. Here, we recorded extracellular neural activities from three male rhesus macaques (Macaca mulatta) and revealed a set of neural codes of "neuroethogram" in the primate parietal cortex. Analyzing neural responses in macaque dmPPC to naturalistic videos, we discovered several groups of neurons that are sensitive to different categories of ethogram items, low-level sensory features, and saccadic eye movement. We also discovered that the processing of category and feature information by these neurons is sustained by the accumulation of temporal information over a long timescale of up to 30â s, corroborating its reported long temporal receptive windows. We performed an additional behavioral experiment with additional two male rhesus macaques and found that saccade-related activities could not account for the mixed neuronal responses elicited by the video stimuli. We further observed monkeys' scan paths and gaze consistency are modulated by video content. Taken altogether, these neural findings explain how dmPPC weaves fabrics of ongoing experiences together in real time. The high dimensionality of neural representations should motivate us to shift the focus of attention from pure selectivity neurons to mixed selectivity neurons, especially in increasingly complex naturalistic task designs.
Asunto(s)
Neuronas , Movimientos Sacádicos , Animales , Masculino , Macaca mulatta , Neuronas/fisiología , Cognición , Lóbulo Parietal/fisiologíaRESUMEN
Efficient electrocatalysts capable of operating continuously at industrial ampere-level current densities are crucial for large-scale applications of electrocatalytic water decomposition for hydrogen production. However, long-term industrial overall water splitting using a single electrocatalyst remains a major challenge. Here, bimetallic polyphthalocyanine (FeCoPPc)-anchored Ru nanoclusters, an innovative electrocatalyst comprising the hydrogen evolution reaction (HER) active Ru and the oxygen evolution reaction (OER) active FeCoPPc, engineered for efficient overall water splitting are demonstrated. By density functional theory calculations and systematic experiments, the electrocatalytic coenhancement effect resulting from unique charge redistribution, which synergistically boosts the HER activity of Ru and the OER activity of FeCoPPc by optimizing the adsorption energy of intermediates, is unveiled. As a result, even at a large current density of 2.0 A cm-2 , the catalyst exhibits low overpotentials of 220 and 308 mV, respectively, for HER and OER. It exhibits excellent stability, requiring only 1.88 V of cell voltage to achieve a current density of 2.0 A cm-2 in a 6.0 m KOH electrolyte at 70 °C, with a remarkable operational stability of over 100 h. This work provides a new electrocatalytic coenhancement strategy for the design and synthesis of electrocatalyst, paving the way for industrial-scale overall water splitting applications.
RESUMEN
Mitochondrial uridine insertion/deletion RNA editing, catalyzed by a multiprotein complex (editosome), is essential for gene expression in trypanosomes and Leishmania parasites. As this process is absent in the human host, a drug targeting this mechanism promises high selectivity and reduced toxicity. Here, we successfully miniaturized our FRET-based full-round RNA editing assay, which replicates the complete RNA editing process, adapting it into a 1536-well format. Leveraging this assay, we screened over 100,000 compounds against purified editosomes derived from Trypanosoma brucei, identifying seven confirmed primary hits. We sourced and evaluated various analogs to enhance the inhibitory and parasiticidal effects of these primary hits. In combination with secondary assays, our compounds marked inhibition of essential catalytic activities, including the RNA editing ligase and interactions of editosome proteins. Although the primary hits did not exhibit any growth inhibitory effect on parasites, we describe eight analog compounds capable of effectively killing T. brucei and/or Leishmania donovani parasites within a low micromolar concentration. Whether parasite killing is - at least in part - due to inhibition of RNA editing in vivo remains to be assessed. Our findings introduce novel molecular scaffolds with the potential for broad antitrypanosomal effects.
Asunto(s)
Trypanosoma brucei brucei , Humanos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Ensayos Analíticos de Alto Rendimiento , Edición de ARN , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN/metabolismoRESUMEN
Anthocyanins are flavonoid-like substances that play important roles in plants' adaptation to various environmental stresses. In this research, we discovered that cytokinin (CK) alone could effectively induce the anthocyanin biosynthesis in Eucalyptus and many other perennial woody plant species, but not in tobacco and Arabidopsis, suggesting a diverse role of CK in regulating anthocyanin biosynthesis in different species. Transcriptomic and metabolomic strategies were used to further clarify the specific role of CK in regulating anthocyanin biosynthesis in Eucalyptus. The results showed that 801 and 2241 genes were differentially regulated at 6 and 24 h, respectively, after CK treatment. Pathway analysis showed that most of the differentially expressed genes were categorized into pathways related to cellular metabolism or transport of metabolites, including amino acids and sugars. The metabolomic results well supported the transcriptome data, which showed that most of the differentially regulated metabolites were related to the metabolism of sugar, amino acids and flavonoids. Moreover, CK treatment significantly induced the accumulation of sucrose in the CK-treated leaves, while sugar starvation mimicked by either defoliation or shading treatment of the basal leaves significantly reduced the sugar increase of the CK-treated leaves and thus inhibited CK-induced anthocyanin biosynthesis. The results of in vitro experiment also suggested that CK-induced anthocyanin in Eucalyptus was sugar-dependent. Furthermore, we identified an early CK-responsive transcription factor MYB113 in Eucalyptus, the expression of which was significantly upregulated by CK treatment in Eucalyptus, but was inhibited in Arabidopsis. Importantly, the overexpression of EgrMYB113 in the Eucalyptus hairy roots was associated with significant anthocyanin accumulation and upregulation of most of the anthocyanin biosynthetic genes. In conclusion, our study demonstrates a key role of CK in the regulation of anthocyanin biosynthesis in Eucalyptus, providing a molecular basis for further understanding the regulatory mechanism and diversity of hormone-regulated anthocyanin biosynthesis in different plant species.
Asunto(s)
Arabidopsis , Eucalyptus , Antocianinas/metabolismo , Arabidopsis/genética , Eucalyptus/genética , Eucalyptus/metabolismo , Azúcares/metabolismo , Citocininas/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Smart and dynamic electromagnetic interference (EMI) shielding materials possess a remarkable capacity to modify their EMI shielding abilities, rendering them invaluable in various civil and military applications. However, the present response mechanism of switch-type EMI shielding materials is slightly restricted, as it primarily depends on continuous pressure induction, thereby resulting in concerns regarding their durability and reliability. Herein, for the first time, we demonstrate a novel method for achieving solvent-responsive, reversible switching, and robust EMI shielding capabilities using a controlled proton-reservoir ordered gel. The gel contains polyaniline (PANI) and sodium alginate (SA). Initially, SA acts as a proton reservoir for PANI in an aqueous system, enhancing the doping level of PANI and improving its electrical conductivity. Additionally, PANI and SA chains respond to diverse polar solvents, such as water, acetonitrile, ethanol, n-hexane, and air, inducing distinct conformations that affect the degree of PANI conjugation and electron migration along the chains. This process is reversible and non-destructive to the polymer chain, ensuring the effective and uncompromised performance of the EMI shielding switch. We can achieve precise and reversible tuning (on/off) of EMI shielding with different effectiveness levels by manipulating the solvents within the framework. This work opens a new solvent-stimuli avenue for the development of EMI shielding materials with reliable and intelligent on/off switching capabilities.