Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(2): 103092, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796848

RESUMEN

Mosaic analysis with double markers (MADM) mouse models closely mimic the clonal origin of human cancers by generating sporadic, GFP-labeled cancer-initiating cells. Traditional clonal analysis pipelines are labor intensive, hindering throughput and disrupting the 3D architecture. Here, we present a protocol that integrates tissue clearing and light-sheet imaging to analyze pre-malignant clones in whole-mount MADM-labeled tissues. We describe steps for generating mosaic-labeled cancer mouse models, tissue harvesting, fixation, and clearing. We then detail procedures for light-sheet imaging and clonal size analysis. For complete details on the use and execution of this protocol, please refer to Zeng et al.1,2.

2.
Cancer Pathog Ther ; 2(1): 15-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38328712

RESUMEN

Brain metastases are a leading cause of cancer-related mortality. However, progress in their treatment has been limited over the past decade, due to an incomplete understanding of the underlying biological mechanisms. Employing accurate in vitro and in vivo models to recapitulate the complexities of brain metastasis offers the most promising approach to unravel the intricate cellular and physiological processes involved. Here, we present a comprehensive review of the currently accessible models for studying brain metastasis. We introduce a diverse array of in vitro and in vivo models, including cultured cells using the Transwell system, organoids, microfluidic models, syngeneic models, xenograft models, and genetically engineered models. We have also provided a concise summary of the merits and limitations inherent to each model while identifying the optimal contexts for their effective utilization. This review serves as a comprehensive resource, aiding researchers in making well-informed decisions regarding model selection that align with specific research questions.

3.
Dis Model Mech ; 16(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815460

RESUMEN

Basal-like breast cancer (BLBC) is highly aggressive, and often characterized by BRCA1 and p53 deficiency. Although conventional mouse models enabled the investigation of BLBC at malignant stages, its initiation and pre-malignant progression remain understudied. Here, we leveraged a mouse genetic system known as mosaic analysis with double markers (MADM) to study BLBC initiation by generating rare GFP+Brca1, p53-deficient mammary cells alongside RFP+ wild-type sibling cells. After confirming the close resemblance of mammary tumors arising in this model to human BLBC at both transcriptomic and genomic levels, we focused our studies on the pre-malignant progression of BLBC. Initiated GFP+ mutant cells showed a stepwise pre-malignant progression trajectory from focal expansion to hyper-alveolarization and then to micro-invasion. Furthermore, despite morphological similarities to alveoli, hyper-alveolarized structures actually originate from ductal cells based on twin-spot analysis of GFP-RFP sibling cells. Finally, luminal-to-basal transition occurred exclusively in cells that have progressed to micro-invasive lesions. Our MADM model provides excellent spatiotemporal resolution to illuminate the pre-malignant progression of BLBC, and should enable future studies on early detection and prevention for this cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Ratones , Animales , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteína p53 Supresora de Tumor/genética , Neoplasias Mamarias Animales/genética , Mama/patología
4.
Int J Biol Sci ; 19(13): 4311-4326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705736

RESUMEN

Gliomas develop in unique and complicated environments that nourish tumor cells. The tumor microenvironment (TME) of gliomas comprises heterogeneous cells, including brain-resident cells, immune cells, and vascular cells. Reciprocal interactions among these cells are involved in the evolution of the TME. Moreover, the study of attractive therapeutic strategies that target the TME is transitioning from basic research to the clinic. Mouse models are indispensable tools for dissecting the processes and mechanisms leading to TME evolution. In this review, we overview the paradoxical roles of the TME, as well as the recent progress of mouse models in TME research. Finally, we summarize recent advances in TME-targeting therapeutic strategies.


Asunto(s)
Glioma , Microambiente Tumoral , Animales , Ratones , Microambiente Tumoral/genética , Glioma/genética , Modelos Animales de Enfermedad
5.
J Biol Chem ; 299(11): 105265, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37734556

RESUMEN

Mosaicism refers to the presence of genetically distinct cell populations in an individual derived from a single zygote, which occurs during the process of development, aging, and genetic diseases. To date, a variety of genetically engineered mosaic analysis models have been established and widely used in studying gene function at exceptional cellular and spatiotemporal resolution, leading to many ground-breaking discoveries. Mosaic analysis with a repressible cellular marker and mosaic analysis with double markers are genetic mosaic analysis models based on trans-recombination. These models can generate sibling cells of distinct genotypes in the same animal and simultaneously label them with different colors. As a result, they offer a powerful approach for lineage tracing and studying the behavior of individual mutant cells in a wildtype environment, which is particularly useful for determining whether gene function is cell autonomous or nonautonomous. Here, we present a comprehensive review on the establishment and applications of mosaic analysis with a repressible cellular marker and mosaic analysis with double marker systems. Leveraging the capabilities of these mosaic models for phenotypic analysis will facilitate new discoveries on the cellular and molecular mechanisms of development and disease.


Asunto(s)
Mosaicismo , Recombinación Genética , Animales , Genotipo , Fenotipo , Humanos
6.
iScience ; 26(5): 106742, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37207276

RESUMEN

Different cellular compartments within a tissue present distinct cancer-initiating capacities. Current approaches to dissect such heterogeneity require cell-type-specific genetic tools based on a well-understood lineage hierarchy, which are lacking for many tissues. Here, we circumvented this hurdle and revealed the dichotomous capacity of fallopian tube Pax8+ cells in initiating ovarian cancer, utilizing a mouse genetic system that stochastically generates rare GFP-labeled mutant cells. Through clonal analysis and spatial profiling, we determined that only clones founded by rare, stem/progenitor-like Pax8+ cells can expand on acquiring oncogenic mutations whereas vast majority of clones stall immediately. Furthermore, expanded mutant clones undergo further attrition: many turn quiescent shortly after the initial expansion, whereas others sustain proliferation and manifest a bias toward Pax8+ fate, underlying early pathogenesis. Our study showcases the power of genetic mosaic system-based clonal analysis for revealing cellular heterogeneity of cancer-initiating capacity in tissues with limited prior knowledge of lineage hierarchy.

7.
Cancer Res ; 83(13): 2105-2122, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205636

RESUMEN

Cancer cell dissemination to sentinel lymph nodes is associated with poor patient outcomes, particularly in breast cancer. The process by which cancer cells egress from the primary tumor upon interfacing with the lymphatic vasculature is complex and driven by dynamic interactions between cancer cells and stromal cells, including cancer-associated fibroblasts (CAF). The matricellular protein periostin can distinguish CAF subtypes in breast cancer and is associated with increased desmoplasia and disease recurrence in patients. However, as periostin is secreted, periostin-expressing CAFs are difficult to characterize in situ, limiting our understanding of their specific contribution to cancer progression. Here, we used in vivo genetic labeling and ablation to lineage trace periostin+ cells and characterize their functions during tumor growth and metastasis. Periostin-expressing CAFs were spatially found at periductal and perivascular margins, were enriched at lymphatic vessel peripheries, and were differentially activated by highly metastatic cancer cells versus poorly metastatic counterparts. Surprisingly, genetically depleting periostin+ CAFs slightly accelerated primary tumor growth but impaired intratumoral collagen organization and inhibited lymphatic, but not lung, metastases. Periostin ablation in CAFs impaired their ability to deposit aligned collagen matrices and inhibited cancer cell invasion through collagen and across lymphatic endothelial cell monolayers. Thus, highly metastatic cancer cells mobilize periostin-expressing CAFs in the primary tumor site that promote collagen remodeling and collective cell invasion within lymphatic vessels and ultimately to sentinel lymph nodes. SIGNIFICANCE: Highly metastatic breast cancer cells activate a population of periostin-expressing CAFs that remodel the extracellular matrix to promote escape of cancer cells into lymphatic vessels and drive colonization of proximal lymph nodes.


Asunto(s)
Neoplasias de la Mama , Ganglios Linfáticos , Humanos , Femenino , Ganglios Linfáticos/patología , Neoplasias de la Mama/patología , Células del Estroma/patología , Invasividad Neoplásica/patología
8.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37163037

RESUMEN

Basal-like breast cancer is an aggressive breast cancer subtype, often characterized by a deficiency in BRCA1 function and concomitant loss of p53 . While conventional mouse models enable the investigation of its malignant stages, one that reveals its initiation and pre-malignant progression is lacking. Here, we leveraged a mouse genetic system known as M osaic A nalysis with D ouble M arkers (MADM) to generate rare GFP-labeled Brca1 , p53 -deficient cells alongside RFP+ wildtype sibling cells in the mammary gland. The mosaicism resembles the sporadic initiation of human cancer and enables spatially resolved analysis of mutant cells in comparison to paired wildtype sibling cells. Mammary tumors arising in the model show transcriptomic and genomic characteristics similar to human basal-like breast cancer. Analysis of GFP+ mutant cells at interval time points before malignancy revealed a stepwise progression of lesions from focal expansion to hyper-alveolarization and then to micro-invasion. These stereotyped morphologies indicate the pre-malignant stage irrespective of the time point at which it is observed. Paired analysis of GFP-RFP siblings during focal expansion suggested that hyper-alveolarized structures originate from ductal rather than alveolar cells, despite their morphological similarities to alveoli. Evidence for luminal-to-basal transition at the pre-malignant stages was restricted to cells that had escaped hyper-alveoli and progressed to micro-invasive lesions. Our MADM-based mouse model presents a useful tool for studying the pre-malignancy of basal-like breast cancer. Summary statement: A mouse model recapitulates the process of human basal-like breast tumorigenesis initiated from sporadic Brca1, p53 -deficient cells, empowering spatially-resolved analysis of mutant cells during pre-malignant progression.

9.
Cancer Immunol Res ; 5(12): 1062-1073, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29097419

RESUMEN

Although CD8+ T cells are critical for controlling tumors, how they are recruited and home to primary and metastatic lesions is incompletely understood. We characterized the homing receptor (HR) ligands on tumor vasculature to determine what drives their expression and their role in T-cell entry. The anatomic location of B16-OVA tumors affected the expression of E-selectin, MadCAM-1, and VCAM-1, whereas the HR ligands CXCL9 and ICAM-1 were expressed on the vasculature regardless of location. VCAM-1 and CXCL9 expression was induced by IFNγ-secreting adaptive immune cells. VCAM-1 and CXCL9/10 enabled CD8+ T-cell effectors expressing α4ß1 integrin and CXCR3 to enter both subcutaneous and peritoneal tumors, whereas E-selectin enabled E-selectin ligand+ effectors to enter subcutaneous tumors. However, MadCAM-1 did not mediate α4ß7+ effector entry into peritoneal tumors due to an unexpected lack of luminal expression. These data establish the relative importance of certain HRs expressed on activated effectors and certain HR ligands expressed on tumor vasculature in the effective immune control of tumors. Cancer Immunol Res; 5(12); 1062-73. ©2017 AACR.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/etiología , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , Inmunidad Adaptativa , Animales , Biomarcadores , Línea Celular Tumoral , Quimiocina CXCL9/genética , Selectina E/genética , Selectina E/metabolismo , Integrina alfa4beta1/genética , Ligandos , Melanoma Experimental , Ratones , Modelos Biológicos , Receptores Mensajeros de Linfocitos/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA