Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7691, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227576

RESUMEN

Copper (Cu)-based catalysts show promise for electrocatalytic CO2 reduction (CO2RR) to multi-carbon alcohols, but thermodynamic constraints lead to competitive hydrocarbon (e.g., ethylene) production. Achieving selective ethanol production with high Faradaic efficiency (FE) and current density is still challenging. Here we show a multivalent Cu-based catalyst, Cu-2,3,7,8-tetraaminophenazine-1,4,6,9-tetraone (Cu-TAPT) with Cu2+ and Cu+ atomic ratio of about 1:2 for CO2RR. Cu-TAPT exhibits an ethanol FE of 54.3 ± 3% at an industrial-scale current density of 429 mA cm-2, with the ethanol-to-ethylene ratio reaching 3.14:1. Experimental and theoretical calculations collectively unveil that the catalyst is stable during CO2RR, resulting from suitable coordination of the Cu2+ and Cu+ with the functional groups in TAPT. Additionally, mechanism studies show that the increased ethanol selectivity originates from synergy of multivalent Cu sites, which can promote asymmetric C-C coupling and adjust the adsorption strength of different carbonaceous intermediates, favoring hydroxy-containing C2 intermediate (*HCCHOH) formation and formation of ethanol.

2.
J Colloid Interface Sci ; 677(Pt B): 194-204, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39142160

RESUMEN

NiMoO4 (NM) has garnered significant attention due to its rich d-orbital electronic structure and multivalent electroactive cations. However, the inherently low electrical conductivity of NM limits its reaction kinetics. Herein, cobalt-substituted NM (Co-NM) nanorods were prepared via a hydrothermal reaction followed by subsequent thermal treatment. The incorporation of Ni-O-Co configurations stimulates an enhanced π-donation effect of the Co-O bond, facilitating the hybridization between the O 2p and Co 3d orbitals and thereby boosting charge transfer kinetics during electrochemical processes. The optimized 10 %Co-NM nanorods demonstrated a remarkable specific capacity of 557.8 C·g-1 at 1 A·g-1. Furthermore, an asymmetric supercapacitor constructed with 10 %Co-NM as the positive electrode and FeOOH as the negative electrode, achieved a significant energy density of 63.58 Wh·kg-1 at a power density of 805.38 W·kg-1. Thus, our work provides new insights into the rational design of stable bridging configurations to significantly improve electrochemical reaction kinetics.

3.
Small ; : e2405596, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148195

RESUMEN

The complexity of the multielement interaction in high-entropy alloys (HEAs) may provide more active sites to adapt different catalytic reaction steps in oxygen evolution reaction (OER). Investigating the correlation between structure and performance of HEAs electrocatalysts is both essential and challenging. In this work, FeCoNiCrMox HEA nanoparticles are successfully fabricated utilizing a unique nanofabrication method called inert gas condensation. With the increase of high-valence metal component Mo, the atomic structure amorphization and electronic structure reconstruction are unveiled. According to the X-ray photoelectron spectroscopy valence spectra, the d-band center of FeCoNiCrMox is ascending, and thus enhancing the adsorption energy. Synchrotron pair distribution function analysis reflects the degree of structural disorder and reveals a robust correlation with the intrinsic OER activities of the electrocatalysts. FeCoNiCrMo1.0 high-entropy metallic glass nanoparticles exhibit an outstanding OER performance with an ultralow overpotential of 294.5 mV at a high current density of 100 mA cm-2. This work brings fundamental and practical insights into the modulation mechanism of metal components of HEAs catalysts for developing OER.

4.
Chem Sci ; 15(30): 11837-11846, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092101

RESUMEN

Excellent ethylene selectivity in acetylene semi-hydrogenation is often obtained at the expense of activity. To break the activity-selectivity trade-off, precise control and in-depth understanding of the three-dimensional atomic structure of surfacial active sites are crucial. Here, we designed a novel Au@PdCu core-shell nanocatalyst featuring diluted and stretched Pd sites on the ultrathin shell (1.6 nm), which showed excellent reactivity and selectivity, with 100% acetylene conversion and 92.4% ethylene selectivity at 122 °C, and the corresponding activity was 3.3 times higher than that of the PdCu alloy. The atomic three-dimensional decoding for the activity-selectivity balance was revealed by combining pair distribution function (PDF) and reverse Monte Carlo simulation (RMC). The results demonstrate that a large number of active sites with a low coordination number of Pd-Pd pairs and an average 3.25% tensile strain are distributed on the surface of the nanocatalyst, which perform a pivotal function in the simultaneous improvement of hydrogenation activity and ethylene selectivity. Our work not only develops a novel strategy for unlocking the linear scaling relation in heterogeneous catalysis but also provides a paradigm for atomic 3D understanding of lattice strain in core-shell nanocatalysts.

5.
Small ; : e2403353, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180455

RESUMEN

Constructing high-entropy alloys (HEAs) with core-shell (CS) nanostructure is efficient for enhancing catalytic activity. However, it is extremely challenging to incorporate the CS structure with HEAs. Herein, PtCoNiMoRh@Rh CS nanoparticles (PtCoNiMoRh@Rh) with ∼5.7 nm for pH-universal hydrogen evolution reaction (HER) are reported for the first time. The PtCoNiMoRh@Rh just require 9.1, 24.9, and 17.1 mV to achieve -10 mA cm-2 in acid, neutral, and alkaline electrolyte, and the corresponding mass activity are 5.8, 2.79, and 91.8 times higher than that of Rh/C. Comparing to PtCoNiMoRh nanoparticles, the PtCoNiMoRh@Rh exhibit excellent HER activity attributed to the decrease of Rh 4d especially 4d5/2 unoccupied state induced by the multi-active sites in HEA, as well as the synergistic effect in Rh shell and HEA core. Theorical calculation exhibits that Rh-dyz, dx2, and dxz orbitals experience a negative shift with shell thickness increasing. The HEAs with CS structure would facilitate the rational design of high-performance HEAs catalysts.

6.
Nat Commun ; 15(1): 6887, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134557

RESUMEN

Tin-lead halide perovskites with a bandgap near 1.2 electron-volt hold great promise for thin-film photovoltaics. However, the film quality of solution-processed Sn-Pb perovskites is compromised by the asynchronous crystallization behavior between Sn and Pb components, where the crystallization of Sn-based perovskites tends to occur faster than that of Pb. Here we show that the rapid crystallization of Sn is rooted in its stereochemically active lone pair, which impedes coordination between the metal ion and Lewis base ligands in the perovskite precursor. From this perspective, we introduce a noncovalent binding agent targeting the open metal site of coordinatively unsaturated Sn(II) solvates, thereby synchronizing crystallization kinetics and homogenizing Sn-Pb alloying. The resultant single-junction Sn-Pb perovskite solar cells achieve a certified power conversion efficiency of 24.13 per cent. The encapsulated device retains 90 per cent of the initial efficiency after 795 h of maximum power point operation under simulated one-sun illumination.

7.
J Hazard Mater ; 477: 135378, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094313

RESUMEN

Despite the importance of surface iron (hydr)oxides (Fe-(hydr)oxides) for the decontamination performance of zerovalent iron (ZVI) -based technologies has been well recognized, controversial understandings of their exact roles still exist due to the complex species distribution of Fe-(hydr)oxides. Herein, we re-structured the surface of ZVI using eight distinct Fe-(hydr)oxides and analyzed their species-specific effects on the performance of ZVI for Se(IV) under well-controlled conditions. The kinetics-relevant performance indicators (Se(IV) removal rates, Fe2+ release rates, and the utilization ratio of ZVI) under the effect of each Fe-(hydr)oxide roughly followed the order: δ-FeOOH > Fe5HO8·4H2O > α-FeOOH > ß-FeOOH > Î³-FeOOH > Î³-Fe2O3 > Fe3O4 > α-Fe2O3. Multiple linear regression analysis shows that the large pore volume and size (instead of specific surface area), low open-circuit potential, and low electrochemical impedance are key positive properties for kinetics-relevant performance. Besides, for electron efficiency of ZVI, only Fe3O4 increased the value to 50.0%, due to the contribution of its ferrous components, while others did not change it (∼20%). Additional experiments with commercial ZVI covered by individual Fe-(hydr)oxides confirmed the observed species-specific trends. All these results not only provide new basis for mechanism explanation but also have practical implications for the production or modification of ZVI.

8.
Angew Chem Int Ed Engl ; : e202412426, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136320

RESUMEN

The electrochemical nitrogen reduction reaction is a crucial process for the sustainable production of ammonia for energy and agriculture applications. However, the reaction's efficiency is highly dependent on the activation of the inert N≡N bond, which is hindered by the electron back-donation to the π* orbitals of the N≡N bond, resulting in low eNRR capacity. Herein, we report a main-group metal-non-metal (O-In-S) eNRR catalyst featuring a dynamic proton bridge, with In-S serving as the polarization pair and O functioning as the dynamic electron pool. In-situ spectroscopic analysis and theoretical calculations reveal that the In-S polarization pair acts as asymmetric dual-sites, polarizing the N≡N bond by concurrently back-donating electrons to both the πx* and πy* orbitals of N2, thereby overcoming the significant band gap limitations, while inhibiting the competitive hydrogen evolution reaction. Meanwhile, the O dynamic electron pool acts as a "repository" for electron storage and donation to the In-S polarization pair. As a result, the O-In-S dynamic proton bridge exhibits exceptional NH3 yield rates and Faradaic efficiencies (FEs) across a wide potential window of 0.3 V, with an optimal NH3 yield of 80.07 ± 4.25 µg h-1 mg-1 and an FE of 38.01 ± 2.02%, outperforming most previously reported catalysts.

9.
Angew Chem Int Ed Engl ; : e202411173, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109442

RESUMEN

The electrochemical propylene epoxidation reaction (PER) provides a promising route for ecofriendly propylene oxide (PO) production, instantly generating active halogen/oxygen species to alleviate chloride contamination inherent in traditional PER. However, the complex processes and unsatisfactory PO yield for current electrochemical PER falls short of meeting industrial application requirements. Herein, a spatial-coupling strategy over RuO2/Ti hollow-fiber penetration electrode (HPE) is adopted to facilitate efficient PO production, significantly improving PER performance to the ampere level (achieving over 80% PO faradaic efficiency and a maximum PO current density of 859 mA cm-2). The synergetic combination of the penetration effect of HPE and the spatial-coupled reaction sequence, enables the realization of ampere-level PO production with high specificity, exhibiting significant potentials for economically viable PER applications.

10.
Angew Chem Int Ed Engl ; : e202407612, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007237

RESUMEN

The synthesis of multicarbon (C2+) products remains a substantial challenge in sustainable CO2 electroreduction owing to the need for sufficient current density and faradaic efficiency alongside carbon efficiency. Herein, we demonstrate ampere-level high-efficiency CO2 electroreduction to C2+ products in both neutral and strongly acidic (pH = 1) electrolytes using a hierarchical Cu hollow-fiber penetration electrode (HPE). High concentration of K+ could concurrently suppress hydrogen evolution reaction and facilitate C-C coupling, thereby promoting C2+ production in strong acid. By optimizing the K+ and H+ concentration and CO2 flow rate, a faradaic efficiency of 84.5% and a partial current density as high as 3.1 A cm-2 for C2+ products, alongside a single-pass carbon efficiency of 81.5% and stable electrolysis for 240 h were demonstrated in a strong acidic solution of H2SO4 and KCl (pH = 1). Experimental measurements and density functional theory simulations suggested that tensile-strained Cu HPE enhances the asymmetric C-C coupling to steer the selectivity and activity of C2+ products.

11.
Nat Commun ; 15(1): 6316, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060325

RESUMEN

Cu catalyses electrochemical CO2 reduction to valuable multicarbon products but understanding the structure-function relationship has remained elusive due to the active Cu sites being heterogenized and under dynamic re-construction during electrolysis. We herein coordinate Cu with six phenyl-1H-1,2,3-triazole derivatives to form stable coordination polymer catalysts with homogenized, single-site Cu active sites. Electronic structure modelling, X-ray absorption spectroscopy, and ultraviolet-visible spectroscopy show a widely tuneable Cu electronics by modulating the highest occupied molecular orbital energy of ligands. Using CO diffuse reflectance Fourier transform infrared spectroscopy, in-situ Raman spectroscopy, and density functional theory calculations, we find that the binding strength of *CO intermediate is positively correlated to highest occupied molecular orbital energies of the ligands. As a result, we enable a tuning of C-C coupling efficiency-a parameter we define to evaluate the efficiency of C2 production-in a broad range of 0.26 to 0.86. This work establishes a molecular platform that allows for studying structure-function relationships in CO2 electrolysis and devises new catalyst design strategies appliable to other electrocatalysis.

12.
Angew Chem Int Ed Engl ; : e202410734, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958047

RESUMEN

Since the discovery in 2000, conversion-type materials have emerged as a promising negative-electrode candidate for next-generation batteries with high capacity and tunable voltage, limited by low reversibility and severe voltage hysteresis. Heterogeneous construction stands out as a cost-effective and efficient approach to reducing reaction barriers and enhancing energy density. However, the second term introduced by conventional heterostructure inevitably complicates the electrochemical analysis and poses great challenges to harvesting systematic insights and theoretical guidance. A model cell is designed and established herein for the conversion reactions between Na and TMSA-SnO2, where TMSA-SnO2 represents single atom modification of eight different 3d transition elements (V, Cr, Mn, Fe, Co, Ni, Cu or Zn). Such a model unit fundamentally eliminates the interference from the second phase and thus enables independent exploration of activation manifestations of the heterogeneous architecture. For the first time, a thermodynamically dependent catalytic effect is proposed and verified through statistical data analysis. The mechanism behind the unveiled catalytic effect is further elucidated by which the active d orbitals of transition metals weaken the surface covalent bonds and lower the reaction barriers. This research provides both theoretical insights and practical demonstrations of the advanced heterogeneous electrodes.

13.
Chemistry ; 30(38): e202400651, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705845

RESUMEN

Proton exchange membrane water electrolysis (PEMWE) is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic oxygen evolution reaction (OER) and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. The optimal candidate (350-IrO2) demonstrates remarkable electrocatalytic activity and stability during the OER, presenting a promising advancement for efficient PEMWE. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr -1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm-2 with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm-2 with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm-2.

14.
Adv Mater ; 36(26): e2401857, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594018

RESUMEN

Defect-engineered bimetallic oxides exhibit high potential for the electrolysis of small organic molecules. However, the ambiguity in the relationship between the defect density and electrocatalytic performance makes it challenging to control the final products of multi-step multi-electron reactions in such electrocatalytic systems. In this study, controllable kinetics reduction is used to maximize the oxygen vacancy density of a Cu─Co oxide nanosheet (CuCo2O4 NS), which is used to catalyze the glycerol electrooxidation reaction (GOR). The CuCo2O4-x NS with the highest oxygen-vacancy density (CuCo2O4-x-2) oxidizes C3 molecules to C1 molecules with selectivity of almost 100% and a Faradaic efficiency of ≈99%, showing the best oxidation performance among all the modified catalysts. Systems with multiple oxygen vacancies in close proximity to each other synergistically facilitate the cleavage of C─C bonds. Density functional theory calculations confirm the ability of closely spaced oxygen vacancies to facilitate charge transfer between the catalyst and several key glycolic-acid (GCA) intermediates of the GOR process, thereby facilitating the decomposition of C2 intermediates to C1 molecules. This study reveals qualitatively in tuning the density of oxygen vacancies for altering the reaction pathway of GOR by the synergistic effects of spatial proximity of high-density oxygen vacancies.

15.
Small ; 20(34): e2402397, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38634268

RESUMEN

Optimizing the local electronic structure of electrocatalysts can effectively lower the energy barrier of electrochemical reactions, thus enhancing the electrocatalytic activity. However, the intrinsic contribution of the electronic effect is still experimentally unclear. In this work, the electron injection-incomplete discharge approach to achieve the electron accumulation (EA) degree on the nickel-iron layered double hydroxide (NiFe LDH) is proposed, to reveal the intrinsic contribution of EA toward oxygen evolution reaction (OER). Such NiFe LDH with EA effect results in only 262 mV overpotential to reach 50 mA cm-2, which is 51 mV-lower compared with pristine NiFe LDH (313 mV), and reduced Tafel slope of 54.8 mV dec-1 than NiFe LDH (107.5 mV dec-1). Spectroscopy characterizations combined with theoretical calculations confirm that the EA near concomitant Vo can induce a narrower energy gap and lower thermodynamic barrier to enhance OER performance. This study clarifies the mechanism of the EA effect on OER activity, providing a direct electronic structure modulation guideline for effective electrocatalyst design.

16.
Adv Mater ; 36(11): e2310273, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37974514

RESUMEN

Cu2+ -based materials, a class of promising catalysts for the electrocatalytic carbon dioxide reduction reaction (CO2 RR) to value-added chemicals, usually undergo inevitable and uncontrollable reorganization processes during the reaction, resulting in catalyst deactivation or the new active sites formation and bringing great challenges to exploring their structure-performance relationships. Herein, a facile strategy is reported for constructing Cu2+ and 3, 4-ethylenedioxythiophene (EDOT) coordination to stabilize Cu2+ ions to prepare a novel layered coordination polymer (CuPEDOT). CuPEDOT enables selective reduction of CO2 to CH4 with 62.7% Faradaic efficiency at the current density of 354 mA cm-2 in a flow cell, and the catalyst is stable for at least 15 h. In situ spectroscopic characterization and theoretical calculations reveal that CuPEDOT catalyst can maintain the Cu2+ -EDOT coordination structurally stable in CO2 RR and significantly promote the further hydrogenation of *CO intermediates, favoring the formation of CH4 instead of dimerization to C2 products. The strong coordination between EDOT and Cu2+ prevents the reduction of Cu2+ ions during CO2 RR. The finding of this work provides a new perspective on designing molecularly stable, highly active catalysts for CO2 RR.

17.
ACS Nano ; 18(1): 1214-1225, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150422

RESUMEN

By substituting the oxygen evolution reaction (OER) with the anodic urea oxidation reaction (UOR), it not only reduces energy consumption for green hydrogen generation but also allows purification of urea-rich wastewater. Spin engineering of the d orbital and oxygen-containing adsorbates has been recognized as an effective pathway for enhancing the performance of electrocatalysts. In this work, we report the fabrication of a bifunctional electrocatalyst composed of amorphous RuO2-coated NiO ultrathin nanosheets (a-RuO2/NiO) with abundant amorphous/crystalline interfaces for hydrogen evolution reaction (HER) and UOR. Impressively, only 1.372 V of voltage is required to attain a current density of 10 mA cm-2 over a urea electrolyzer. The increased oxygen vacancies in a-RuO2/NiO by incorporation of amorphous RuO2 enhance the total magnetization and entail numerous spin-polarized electrons during the reaction, which speeds up the UOR reaction kinetics. The density functional theory study reveals that the amorphous/crystalline interfaces promote charge-carrier transfer, and the tailored d-band center endows the optimized adsorption of oxygen-generated intermediates. This kind of oxygen vacancy induced spin-polarized electrons toward boosting HER and UOR kinetics and provides a reliable reference for exploration of advanced electrocatalysts.

18.
ChemSusChem ; 17(7): e202301050, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38126956

RESUMEN

Electrochemical nitrate reduction reaction (NO3RR) is a promising technology for ammonia production and denitrification of wastewater. Its application is seriously restricted by the development of the highly active and selective electrocatalyst and a rational electrolysis system. Here, we constructed an efficient electrochemical ammonia production process via nitrate reduction on the metallic Cu electrocatalyst when coupled with anodic sulfion oxidation reaction (SOR). The synthesized Cu catalyst delivers an excellent NH3 Faradaic efficiency of 96.0 % and a NH3 yield of 0.391 mmol h-1 cm-2 at -0.2 V vs. reversible hydrogen electrode, which mainly stem from the more favorable conversion of NO2 - to NH3 on Cu0. Importantly, the well-designed electrolysis system with cathodic NO3RR and anodic SOR achieves a dramatically reduced cell voltage of 0.8 V at 50 mA cm-2 in comparison with the one with anodic oxygen evolution reaction (OER) of 1.9 V. This work presents an effective strategy for the energy-saving ammonia production via constructing effective nitrate reduction catalyst and replacing the OER with SOR while removing the pollutants including nitrate and sulfion.

19.
Nature ; 624(7992): 557-563, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913815

RESUMEN

Perovskite solar cells with the formula FA1-xCsxPbI3, where FA is formamidinium, provide an attractive option for integrating high efficiency, durable stability and compatibility with scaled-up fabrication. Despite the incorporation of Cs cations, which could potentially enable a perfect perovskite lattice1,2, the compositional inhomogeneity caused by A-site cation segregation is likely to be detrimental to the photovoltaic performance of the solar cells3,4. Here we visualized the out-of-plane compositional inhomogeneity along the vertical direction across perovskite films and identified the underlying reasons for the inhomogeneity and its potential impact for devices. We devised a strategy using 1-(phenylsulfonyl)pyrrole to homogenize the distribution of cation composition in perovskite films. The resultant p-i-n devices yielded a certified steady-state photon-to-electron conversion efficiency of 25.2% and durable stability.

20.
J Phys Chem Lett ; 13(22): 4941-4948, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35635487

RESUMEN

Colloidal semiconductor ternary CdTeS magic-size clusters (MSCs) have not been reported. Here, we present the first synthesis of CdTeS MSCs at room temperature and our understanding of the evolution pathway. The MSCs exhibit sharp optical absorption peaking at 381 nm and are labeled MSC-381. CdTeS MSC-381 evolves when pre-nucleation-stage samples of binary CdTe and CdS that do not contain quantum dots (QDs) are separately prepared and then mixed and incubated at room temperature. We propose that CdTeS MSC-381 evolves from its precursor compound (PC) via quasi-isomerization. Synchrotron-based small-angle X-ray scattering suggests that PCs/MSCs of CdTe and CdTeS are similar in sizes. We propose further that the CdTeS PC forms from the substitution reaction between the CdTe PC and the CdS monomer/fragment (Mo/Fr). The present study paves the way to the room-temperature evolution of ternary MSCs and provides an in-depth understanding of the PC to MSC transformation.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Telurio , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...