Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 13(1): 452, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064468

RESUMEN

BACKGROUND: Multiple studies have reported that stem cell therapy has beneficial effects in animal models of intracerebral hemorrhage (ICH). However, this finding remains inconclusive. This study was performed to systematically determine the effect size of stem cell therapy in ICH animal models by pooling and analyzing data from newly published studies. METHODS: A literature search identified studies of stem cells in animal models of ICH. We searched mainstream databases from inception to November, 2021. And pooled effect size of stem cells was determined for diversified neurobehavioral scales and structural endpoints using random effects models. RESULTS: The median quality score of 62 included studies was 5.32. Our results revealed an overall positive effect of stem cell therapy. More specifically, the SMD was - 2.27 for mNSS, - 2.14 for rotarod test, - 2.06 for MLPT, - 1.33 for cylinder test, - 1.95 for corner turn test, - 1.42 for tissue loss, and - 1.86 for brain water content. For mNSS, classifying comparisons by quality score showed significant differences in estimates of effect size (p = 0.013), and high-quality comparisons showed a better outcome (SMD = - 2.57) compared with low-quality comparisons (SMD = - 1.59). Besides, different delivery routes also showed a significant difference in the estimates of effect size for mNSS (p = 0.002), and the intraperitoneal route showed the best outcome (SMD = - 4.63). For tissue loss, the autologous blood-induced ICH model showed a better outcome (SMD = - 1.84) compared with the collagenase-induced ICH model (SMD = - 0.94, p = 0.035). Additionally, stem cell therapy initiated within 8 h post-ICH showed the greatest efficacy on tissue loss reduction, followed by initiated with 24 h post-ICH. Finally, stem cells with different sources and types showed similar beneficial effects for mNSS as well as tissue loss. CONCLUSIONS: Our results suggested that stem cell therapy had remarkable benefits on ICH animals on both the functional and structural outcomes in animal models of ICH, with very large effect size. These findings support the utility of further studies to translate stem cells in the treatment of ICH in humans. Moreover, the results should be interpreted in the light of the limitations in experimental design and the methodological quality of the studies included in the meta-analysis.


Asunto(s)
Hemorragia Cerebral , Trasplante de Células Madre , Animales , Encéfalo , Hemorragia Cerebral/terapia , Modelos Animales de Enfermedad , Humanos
2.
Front Cell Neurosci ; 16: 951202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966199

RESUMEN

Neurological disorders are a group of disorders with motor, sensory or cognitive damage, caused by dysfunction of the central or peripheral nervous system. Cyclin-dependent kinases 5 (Cdk5) is of vital significance for the development of the nervous system, including the migration and differentiation of neurons, the formation of synapses, and axon regeneration. However, when the nervous system is subject to pathological stimulation, aberrant activation of Cdk5 will induce abnormal phosphorylation of a variety of substrates, resulting in a cascade signaling pathway, and thus lead to pathological changes. Cdk5 is intimately related to the pathological mechanism of a variety of neurological disorders, such as A-ß protein formation in Alzheimer's disease, mitochondrial fragmentation in cerebral ischemia, and apoptosis of dopaminergic neurons in Parkinson's disease. It is worth noting that Cdk5 inhibitors have been reported to have neuroprotective effects by inhibiting related pathological processes. Therefore, in this review, we will briefly introduce the physiological and pathological mechanisms of Cdk5 in the nervous system, focusing on the recent advances of Cdk5 in neurological disorders and the prospect of targeted Cdk5 for the treatment of neurological disorders.

3.
Oxid Med Cell Longev ; 2022: 2504798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571256

RESUMEN

Stroke is one of the leading causes of death and disability in the world. However, the pathophysiological process of stroke is still not fully clarified. Mitochondria play an important role in promoting nerve survival and are an important drug target for the treatment of stroke. Mitochondrial dysfunction is one of the hallmarks of stroke. Mitochondria are in a state of continuous fission and fusion, which are termed as mitochondrial dynamics. Mitochondrial dynamics are very important for maintaining various functions of mitochondria. In this review, we will introduce the structure and functions of mitochondrial fission and fusion related proteins and discuss their role in the pathophysiologic process of stroke. A better understanding of mitochondrial dynamin in stroke will pave way for the development of new therapeutic options.


Asunto(s)
Dinaminas , Accidente Cerebrovascular , Sistemas de Liberación de Medicamentos , Dinaminas/metabolismo , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Accidente Cerebrovascular/metabolismo
4.
Front Cell Dev Biol ; 10: 820692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35425766

RESUMEN

Hepatic encephalopathy (HE) is a brain dysfunction associated with poor quality of life, increased morbidity and mortality. The pathogenesis of HE is still not fully clarified and effective therapeutic strategies are imperative. Among multiple factors that contribute to the pathophysiological process of HE, ammonia neurotoxicity is thought to be central in the pathogenesis of HE. Therefore, in this study, we subjected SH-SY5Y cells to ammonia insult and performed a pooled genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) knockout screen to unveil the underlying molecular mechanisms of ammonia neurotoxicity and discover new potential therapeutic targets for HE. We found that EGLN3 (egl-9 family hypoxia-inducible factor 3) UCP3,GTPBP5, OR4D11 and SDR9C7 with 6 unique sgRNAs may contribute to protection against ammonia injury, while EGLN3 may be most related to ammonia resistance. We knocked down EGLN3 by transfecting neurons with specific shRNA lentivirus and confirmed that EGLN3 knockdown decreased ammonia-induced caspase-3 activation and apoptosis. We also demonstrated that EGLN3 knockdown ameliorated ammonia induced decreased expression of Bcl-2, increased expression of Bax and inhibited release of cytochrome c into the cytosol in neurons, suggesting that EGLN3 inhibition protected against ammonia induced apoptosis through mitochondrial dependent apoptosis pathway. Future therapeutic strategies regulating EGLN3 may be applied to the management of HE.

5.
Ann Transl Med ; 9(17): 1362, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34733914

RESUMEN

BACKGROUND: Microglia plays a vital role in neuroinflammation, contributing to the pathogenesis of intracerebral hemorrhage (ICH)-induced brain injury. Mesenchymal stem cells (MSCs) hold great potential for treating ICH. We previously revealed that MSCs ameliorate the microglial pyroptosis caused by an ischemic stroke. However, whether MSCs can modulate microglial pyroptosis after ICH remains unknown. This study aimed to investigate the neuroprotective effects of hypoxia-preconditioned olfactory mucosa MSCs (OM-MSCs) on ICH and the possible mechanisms. METHODS: ICH was induced in mice via administration of collagenase IV. At 6 h post-ICH, 2-4×105 normoxic/hypoxic OM-MSCs or saline were intracerebrally administered. To evaluate the neuroprotective effects, the behavioral outcome, apoptosis, and neuronal injury were measured. Microglia activation and pro-inflammatory cytokines were applied to detect neuroinflammation. Microglial pyroptosis was determined by western blotting, immunofluorescence staining, and transmission electron microscopy (TEM). RESULTS: The two OM-MSC-transplanted groups exhibited significantly improved functional recovery and reduced neuronal injury, especially the hypoxic OM-MSCs group. Hypoxic OM-MSCs attenuated microglial activation as well as the levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Moreover, we found that hypoxia-preconditioned OM-MSCs ameliorated pyroptosis by diminishing the levels of pyroptosis-associated proteins in peri-hematoma brain tissues, decreasing the expression of the microglial nod-like receptor family protein 3 (NLRP3) and caspase-1, and reducing the membrane pores on microglia post-ICH. CONCLUSIONS: Our study showed that hypoxic preconditioning augments the therapeutic efficacy of OM-MSCs, and hypoxia-preconditioned OM-MSCs alleviate microglial pyroptosis in the ICH model.

6.
Oxid Med Cell Longev ; 2021: 4805040, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34815829

RESUMEN

The mechanism of Golgi apparatus (GA) stress responses mediated by GOLPH3 has been widely studied in ischemic stroke, and the neuroprotection effect of olfactory mucosa mesenchymal stem cells (OM-MSCs) against cerebral ischemia/reperfusion injury (IRI) has been preliminarily presented. However, the exact role of OM-MSCs in the GA stress response following cerebral IRI remains to be elucidated. In the present study, we used an oxygen-glucose deprivation/reoxygenation (OGD/R) model and reversible middle cerebral artery occlusion (MCAO) model to simulate cerebral IRI in vitro and in vivo. Our results showed that the level of GOLPH3 protein, reactive oxygen species (ROS), and Ca2+ was upregulated, SPCA1 level was downregulated, and GA fragmentation was increased in ischemic stroke models, and OM-MSC treatment clearly ameliorated these GA stress responses in vitro and in vivo. Subsequently, the knockdown of PEDF in OM-MSCs using PEDF-specific siRNA further demonstrated that secretion of PEDF in OM-MSCs protected OGD/R-treated N2a cells and MCAO rats from GA stress response. Additionally, rescue experiment using specific pathway inhibitors suggested that OM-MSCs could promote the phosphorylation of the PI3K/Akt/mTOR pathway, thereby mitigating OGD/R-induced GA stress response and excessive autophagy. In conclusion, OM-MSCs minimized the GA stress response following cerebral IRI, at least partially, through the PEDF-PI3K/Akt/mTOR pathway.


Asunto(s)
Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Células Madre Mesenquimatosas/citología , Fármacos Neuroprotectores/farmacología , Mucosa Olfatoria/citología , Estrés Oxidativo , Daño por Reperfusión/terapia , Animales , Autofagia , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Glucosa/deficiencia , Aparato de Golgi/patología , Hipoxia , Infarto de la Arteria Cerebral Media/complicaciones , Masculino , Trasplante de Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Serpinas/genética , Serpinas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
7.
Stem Cell Res Ther ; 12(1): 413, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294127

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is a major public health concern, and mesenchymal stem cells (MSCs) hold great potential for treating ICH. However, the quantity and quality of MSCs decline in the cerebral niche, limiting the potential efficacy of MSCs. Hypoxic preconditioning is suggested to enhance the survival of MSCs and augment the therapeutic efficacy of MSCs in ICH. MicroRNAs (miRNAs) are known to mediate cellular senescence. However, the precise mechanism by which miRNAs regulate the senescence of hypoxic MSCs remains to be further studied. In the present study, we evaluated whether hypoxic preconditioning enhances the survival and therapeutic effects of olfactory mucosa MSC (OM-MSC) survival and therapeutic effects in ICH and investigated the mechanisms by which miRNA ameliorates hypoxic OM-MSC senescence. METHODS: In the in vivo model, ICH was induced in mice by administration of collagenase IV. At 24 h post-ICH, 5 × 105 normoxia or hypoxia OM-MSCs or saline was administered intracerebrally. The behavioral outcome, neuronal apoptosis, and OM-MSC survival were evaluated. In the in vitro model, OM-MSCs were exposed to hemin. Cellular senescence was examined by evaluating the expressions of P16INK4A, P21, P53, and by ß-galactosidase staining. Microarray and bioinformatic analyses were performed to investigate the differences in the miRNA expression profiles between the normoxia and hypoxia OM-MSCs. Autophagy was confirmed using the protein expression levels of LC3, P62, and Beclin-1. RESULTS: In the in vivo model, transplanted OM-MSCs with hypoxic preconditioning exhibited increased survival and tissue-protective capability. In the in vitro model, hypoxia preconditioning decreased the senescence of OM-MSCs exposed to hemin. Bioinformatic analysis identified that microRNA-326 (miR-326) expression was significantly increased in the hypoxia OM-MSCs compared with that of normoxia OM-MSCs. Upregulation of miR-326 alleviated normoxia OM-MSC senescence, whereas miR-326 downregulation increased hypoxia OM-MSC senescence. Furthermore, we showed that miR-326 alleviated cellular senescence by upregulating autophagy. Mechanistically, miR-326 promoted the autophagy of OM-MSCs via the PI3K signaling pathway by targeting polypyrimidine tract-binding protein 1 (PTBP1). CONCLUSIONS: Our study shows that hypoxic preconditioning delays OM-MSC senescence and augments the therapeutic efficacy of OM-MSCs in ICH by upregulating the miR-326/PTBP1/PI3K-mediated autophagy.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Animales , Apoptosis , Autofagia , Hemorragia Cerebral/genética , Hemorragia Cerebral/terapia , Hipoxia , Ratones , MicroARNs/genética , Neuroprotección , Fosfatidilinositol 3-Quinasas
8.
Int J Mol Med ; 47(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33537825

RESUMEN

The Golgi apparatus is known to underpin many important cellular homeostatic functions, including trafficking, sorting and modifications of proteins or lipids. These functions are dysregulated in neurodegenerative diseases, cancer, infectious diseases and cardiovascular diseases, and the number of disease­related genes associated with Golgi apparatus is on the increase. Recently, many studies have suggested that the mutations in the genes encoding Golgi resident proteins can trigger the occurrence of diseases. By summarizing the pathogenesis of these genetic diseases, it was found that most of these diseases have defects in membrane trafficking. Such defects typically result in mislocalization of proteins, impaired glycosylation of proteins, and the accumulation of undegraded proteins. In the present review, we aim to understand the patterns of mutations in the genes encoding Golgi resident proteins and decipher the interplay between Golgi resident proteins and membrane trafficking pathway in cells. Furthermore, the detection of Golgi resident protein in human serum samples has the potential to be used as a diagnostic tool for diseases, and its central role in membrane trafficking pathways provides possible targets for disease therapy. Thus, we also introduced the clinical value of Golgi apparatus in the present review.


Asunto(s)
Enfermedad , Aparato de Golgi/metabolismo , Animales , Biomarcadores/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Mutación/genética
9.
Aging (Albany NY) ; 13(4): 6194-6204, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33609088

RESUMEN

Cerebral ischemia-reperfusion induces mitochondrial fragmentation and dysfunction, which plays a critical role in the subsequent neuronal death and neurological impairment. Protection of mitochondria is an effective strategy to prevent neuronal damage after cerebral ischemia-reperfusion injury. USP30 is a deubiquitinating enzyme that localizes to the outer mitochondrial membrane. USP30 participates in the regulation of mitophagy and maintenance of mitochondrial morphology. In this study, the neuroprotective effect of USP30 and the underlying mechanisms were assessed in an ischemia-reperfusion injury model. SK-N-BE (2) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. Ubiquitination of mitochondrial proteins is increased during the early stage of reperfusion after oxygen-glucose deprivation (OGD), but the ubiquitination of cytoplasmic proteins exhibits no obvious changes. OGDR insult also induces rapid ubiquitination and degradation of the mitochondrial fusion protein mitofusin 2 (MFN2) in the early stage of reperfusion after OGD. Overexpression of MFN2 attenuates OGDR induced mitochondrial fragmentation. USP30 overexpression suppresses OGDR-induced ubiquitination and degradation of MFN2, and protects against mitochondrial fragmentation. Therefore, precisely targeting USP30 may provide a novel therapeutic strategy for cerebral ischemia-reperfusion related disorders.


Asunto(s)
GTP Fosfohidrolasas/genética , Glucosa/deficiencia , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Mitofagia , Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Tioléster Hidrolasas/genética , Ubiquitinación , Humanos , Fármacos Neuroprotectores/farmacología
10.
Aging (Albany NY) ; 13(2): 3010-3030, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33503014

RESUMEN

Melatonin is a potent antioxidant and anti-inflammatory agent that is showing promising results in acute brain injury. The aim of this study was to systematically evaluate the pre-clinical evidence on the effectiveness of melatonin in improving outcome after intracerebral hemorrhage (ICH). We searched mainstream databases from the inception to the end of June 2020. Outcomes were measured by neurobehavioral scores or brain water content. Meta-analyses were performed with Stata 12.0 and Review Manager 5.3. Finally, 8 articles published from 2008 to 2019 met the inclusion criteria. Meta-analysis of pre-clinical data revealed an overall positive effect on neurobehavioral outcome with a standardized mean difference (SMD) of -0.81 (95% CI: -1.47, -0.15; p = 0.016) with significant heterogeneity (Q = 41.49, I2 = 68.7%; p = 0.000). Further subgroup analysis were performed from methodological differences, especially dose and timing of treatments. Furthermore, melatonin reduced cerebral edema by an SMD of -0.78 (95% CI: -1.23, -0.34; p = 0.001) with low heterogeneity. In conclusion, melatonin treatment significantly improves both behavioral and pathological outcomes in animal models of ICH. In addition, the results should be interpreted in light of the limitations in experimental design and methodological quality of the studies included in the meta-analysis.


Asunto(s)
Hemorragia Cerebral/tratamiento farmacológico , Melatonina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Modelos Animales de Enfermedad , Resultado del Tratamiento
11.
Life Sci ; 269: 119062, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33476635

RESUMEN

AIMS: Cyclin-dependent kinase 5 (CDK5) is a potential target for the treatment of cerebral ischemia. CDK5 is one of the upstream regulators for Dynamin-related protein 1 (Drp1) phosphorylation. This study intends to discuss whether CDK5 inhibition conferring neuroprotection in cerebral ischemia through regulating Drp1 phosphorylation. MATERIALS AND METHODS: Mouse neuroblastoma N2a cells and N1E-115 cells were cultured and subjected to oxygen-glucose deprivation/reperfusion (OGDR). N2a cells and N1E-115 cells were treated with Roscovitine, a pharmacological inhibitor of CDK5, or transfected with CDK5 siRNA to knock down CDK5 expression. N2a cells were transfected with different plasmids (Drp1-Myc, the dephosphorylation-mimic mutant Drp1S616A-Myc and the phosphorylation-mimic mutant Drp1S616D-Myc). The expression of CDK5 and its activator p35, Drp1 and phosphorylated Drp1 on S616 was determined by western blot. The morphology of mitochondria was detected by immunofluorescence staining and the proportion of N2a cells with apoptosis was detected by flow cytometry analysis. KEY FINDINGS: Expression of CDK5, p35 and phosphorylated Drp1 on S616 was strongly upregulated after 4 h and 12 h reperfusion following 4 h oxygen-glucose deprivation (OGD) at protein level. CDK5 inhibition by pre-treated with Roscovitine or transfection with CDK5 siRNA significantly ameliorated OGDR induced mitochondrial fragmentation and apoptosis. Overexpression of the phosphorylation-mimic mutant Drp1S616D abrogated the protective effect of CDK5 inhibition against OGDR induced mitochondrial fragmentation and apoptosis. SIGNIFICANCE: Our data indicate that the neuroprotective effect of CDK5 inhibition against OGDR induced neuronal damage is Drp1S616 phosphorylation dependent. A better understanding of the neuroprotective mechanisms of CDK5 inhibition in cerebral ischemia will help to develop safe and efficacious drugs targeting CDK5 signaling for clinical use.


Asunto(s)
Apoptosis , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Dinaminas/metabolismo , Glucosa/deficiencia , Mitocondrias/patología , Neuroblastoma/prevención & control , Oxígeno/metabolismo , Animales , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Dinaminas/genética , Ratones , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fármacos Neuroprotectores , Fosforilación , Daño por Reperfusión/complicaciones , Transducción de Señal , Células Tumorales Cultivadas
12.
Front Immunol ; 12: 792098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046951

RESUMEN

Background: Multiple preclinical studies have demonstrated that bone-marrow derived mesenchymal stromal (stem) cells [MSC(M)] positively influence the severity of sepsis symptoms and mortality in rodent models. However, this remains an inconclusive finding. Objective: To review the effect of naïve MSC(M) in rodent models of sepsis. Methods: The PubMed, EMBASE, and Web of Science databases were searched up to August 31, 2021. Inclusion criteria according to PICOS criteria were as follows: (1) population: rodents; (2) intervention: unmodified MSC(M); (3) comparison: not specified; (4) primary outcome: the effects of MSC(M) cell therapy on the mortality of rodent models of sepsis and endotoxemia; (5) study: experimental studies. Multiple prespecified subgroup and meta-regression analysis were conducted. Following quality assessment, random effects models were used for this meta-analysis.The inverse variance method of the fixed effects model was used to calculate the pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Results: twenty-four animal studies met the inclusion criteria. Our results revealed an overall OR difference between animals treated with naïve MSC(M) and controls for mortality rate was 0.34(95% confidence interval: 0.27-0.44; P < 0.0001). Significant heterogeneity among studies was observed. Conclusions: The findings of this meta-analysis suggest that naïve MSC(M) therapy decreased mortality in rodent models of sepsis. Additionally, we identified several key knowledge gaps, including the lack of large animal studies and uncertainty regarding the optimal dose of MSC(M) transplantation in sepsis. Before MSC(M) treatment can advance to clinical trials, these knowledge gaps must be addressed.


Asunto(s)
Modelos Animales de Enfermedad , Trasplante de Células Madre Mesenquimatosas/métodos , Sepsis , Animales , Roedores
13.
J Cell Mol Med ; 24(16): 9313-9322, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32618081

RESUMEN

Recanalization therapy by intravenous thrombolysis or endovascular therapy is critical for the treatment of cerebral infarction. However, the recanalization treatment will also exacerbate acute brain injury and even severely threatens human life due to the reperfusion injury. So far, the underlying mechanisms for cerebral ischaemia-reperfusion injury are poorly understood and effective therapeutic interventions are yet to be discovered. Therefore, in the research, we subjected SK-N-BE(2) cells to oxygen-glucose deprivation/reperfusion (OGDR) insult and performed a pooled genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) knockout screen to discover new potential therapeutic targets for cerebral ischaemia-reperfusion injury. We used Metascape to identify candidate genes which might involve in OGDR resistance. We found that the genes contributed to OGDR resistance were primarily involved in neutrophil degranulation, mitochondrial translation, and regulation of cysteine-type endopeptidase activity involved in apoptotic process and response to oxidative stress. We then knocked down some of the identified candidate genes individually. We demonstrated that MRPL19, MRPL32, MRPL52 and MRPL51 inhibition increased cell viability and attenuated OGDR-induced apoptosis. We also demonstrated that OGDR down-regulated the expression of MRPL19 and MRPL51 protein. Taken together, our data suggest that genome-scale screening with Cas9 is a reliable tool to analyse the cellular systems that respond to OGDR injury. MRPL19 and MRPL51 contribute to OGDR resistance and are supposed to be promising targets for the treatment of cerebral ischaemia-reperfusion damage.


Asunto(s)
Sistemas CRISPR-Cas , Glucosa/deficiencia , Proteínas Mitocondriales/antagonistas & inhibidores , Neuroblastoma/patología , Oxígeno/metabolismo , Daño por Reperfusión/fisiopatología , Proteínas Ribosómicas/antagonistas & inhibidores , Regulación de la Expresión Génica , Humanos , Proteínas Mitocondriales/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estrés Oxidativo , Proteínas Ribosómicas/genética , Células Tumorales Cultivadas
14.
Oxid Med Cell Longev ; 2020: 5457049, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32089771

RESUMEN

The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress. We also discuss molecular mechanisms underlying the impairments of these protein degradation pathways and how such impairments lead to neuronal damage after cerebral ischemia. Further, we review the recent advance on the understanding of the involvement of these two pathways in the pathological process during many therapeutic approaches against cerebral ischemia. Despite recent advances, the exact role and molecular mechanisms of these two pathways following cerebral ischemia are complex and not completely understood, of which better understanding will provide avenues to develop novel therapeutic strategies for ischemic stroke.


Asunto(s)
Autofagia/inmunología , Isquemia Encefálica/genética , Lisosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Humanos
15.
Int J Med Sci ; 16(11): 1492-1503, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31673241

RESUMEN

Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke. Membrane lipid rafts (MLRs) are crucial structures for neuron survival and growth signaling pathways. Caveolin-1 (Cav-1), the main scaffold protein present in MLRs, targets many neural growth proteins and promotes growth of neurons and dendrites. Targeting Cav-1 may be a promising therapeutic strategy to enhance neuroplasticity after cerebral ischemia. This review addresses the role of Cav-1 and MLRs in neuronal growth after ischemic stroke, with an emphasis on the mechanisms by which Cav-1/MLRs modulate neuroplasticity via related receptors, signaling pathways, and gene expression. We further discuss how Cav-1/MLRs may be exploited as a potential therapeutic target to restore neuroplasticity after ischemic stroke. Finally, several representative pharmacological agents known to enhance neuroplasticity are discussed in this review.


Asunto(s)
Caveolina 1/genética , Microdominios de Membrana/genética , Neuronas/metabolismo , Accidente Cerebrovascular/genética , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Caveolina 1/antagonistas & inhibidores , Dendritas/genética , Dendritas/patología , Expresión Génica/genética , Humanos , Neurogénesis/genética , Plasticidad Neuronal/genética , Neuronas/patología , Transducción de Señal/genética , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia
16.
Oxid Med Cell Longev ; 2019: 6507537, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354911

RESUMEN

The Golgi apparatus (GA) is a pivotal organelle, and its fragmentation is an essential process in the development of apoptosis. GA is a potential target in the treatment of cerebral ischemia-reperfusion injury. Histone deacetylase 6 (HDAC6) catalyzes the removal of functional acetyl groups from proteins and plays an important role in cell homeostasis. In this study, the neuroprotective effects and the underlying mechanisms of HDAC6 inhibition were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma N2a cells and cultured neurons were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces Golgi fragmentation and reduces tubulin acetylation in N2a cells and cultured neurons. Golgi fragmentation is prior to nuclear chromatin condensation after OGDR injury. Overexpression of GBF1 not only protects against OGDR-induced Golgi fragmentation but also protects against OGDR-induced apoptosis, suggesting that Golgi fragmentation is not secondary to apoptosis but plays a causal role for subsequent apoptosis. HDAC6 inhibition suppresses OGDR-induced tubulin deacetylation, p115 cleavage, and caspase 3 activation and protects against OGDR-induced Golgi fragmentation and apoptosis. This work opens a new avenue for potential clinical application of HDAC6 inhibitors for cerebral ischemia-reperfusion-related disorders.


Asunto(s)
Aparato de Golgi/efectos de los fármacos , Histona Desacetilasa 6/uso terapéutico , Animales , Apoptosis , Histona Desacetilasa 6/farmacología , Ratones , Transfección
17.
J Cell Physiol ; 234(4): 5304-5318, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30216439

RESUMEN

Inflammation and apoptosis are two key factors contributing to secondary brain injury after intracerebral hemorrhage (ICH). In the present study, we explored the neuroprotective role of methylene blue (MB) in ICH rats and studied the potential mechanisms involved. Rats were subjected to local injection of collagenase IV in the striatum or sham surgery. We observed that MB treatment could exert a neuroprotective effect on ICH by promoting neurological scores, decreasing the brain water content, alleviating brain-blood barrier disruption, and improving the histological damages in the perihematomal areas. Furthermore, we demonstrated that the various mechanisms underlying MB's neuroprotective effects linked to inhibited apoptosis and inhibited neuroinflammation. In addition, wortmannin, a selective inhibitor of phosphoinositide 3-kinase (PI3K), could reverse the antiapoptotic and anti-inflammatory effects of MB, which suggested that the PI3K-Akt pathway played an important role. In conclusion, these data suggested that MB could inhibit apoptosis and ameliorate neuroinflammation after ICH, and its neuroprotective effects might be exerted via the activation of the PI3K/Akt/GSK3ß pathway.


Asunto(s)
Antiinflamatorios/farmacología , Encéfalo/efectos de los fármacos , Hemorragia Cerebral/tratamiento farmacológico , Encefalitis/prevención & control , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Azul de Metileno/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/enzimología , Barrera Hematoencefálica/patología , Encéfalo/enzimología , Encéfalo/patología , Edema Encefálico/enzimología , Edema Encefálico/patología , Edema Encefálico/prevención & control , Permeabilidad Capilar/efectos de los fármacos , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/enzimología , Hemorragia Cerebral/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/enzimología , Encefalitis/etiología , Encefalitis/patología , Masculino , Microglía/efectos de los fármacos , Microglía/enzimología , Microglía/patología , Neuronas/enzimología , Neuronas/patología , Infiltración Neutrófila/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal
19.
Mol Neurobiol ; 54(3): 1887-1905, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-26894397

RESUMEN

Despite great progresses in the treatment and prevention of ischemic stroke, it is still among the leading causes of death and serious long-term disability all over the world, indicating that innovative neural regenerative and neuroprotective agents are urgently needed for the development of therapeutic approaches with greater efficacy for ischemic stroke. More and more evidence suggests that a spectrum of epigenetic processes play an important role in the pathophysiology of cerebral ischemia. In the present review, we first discuss recent developments in epigenetic mechanisms, especially their roles in the pathophysiology of cerebral ischemia. Specifically, we focus on DNA methylation, histone deacetylase, histone methylation, and microRNAs (miRNAs) in the regulation of vascular and neuronal regeneration after cerebral ischemia. Additionally, we highlight epigenetic strategies for ischemic stroke treatments, including the inhibition of histone deacetylase enzyme and DNA methyltransferase activities, and miRNAs. These therapeutic strategies are far from clinic use, but preliminary data indicate that neuroprotective agents targeting these pathways can modulate neural cell regeneration and promote brain repair and functional recovery after cerebral ischemia. A better understanding of how epigenetics influences the process and progress of cerebral ischemia will pave the way for discovering more sensitive and specific biomarkers and new targets and therapeutics for ischemic stroke.


Asunto(s)
Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Metilación de ADN/fisiología , Epigénesis Genética/fisiología , Animales , Isquemia Encefálica/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo
20.
Oxid Med Cell Longev ; 2016: 8474303, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27597885

RESUMEN

Ischemic stroke results in severe brain damage and remains one of the leading causes of death and disability worldwide. Effective neuroprotective therapies are needed to reduce brain damage resulting from ischemic stroke. Mitochondria are crucial for cellular energy production and homeostasis. Modulation of mitochondrial function mediates neuroprotection against ischemic brain damage. Dynamin-related protein 1 (Drp1) and parkin play a key role in regulating mitochondrial dynamics. They are potential therapeutic targets for neuroprotection in ischemic stroke. Protective effects of parkin-Drp1 pathway on mitochondria were assessed in a cellular ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces mitochondrial fragmentation. The expression of Drp1 protein is increased after OGDR insult, while the parkin protein level is decreased. The altered protein level of Drp1 after OGDR injury is mediated by parkin through ubiquitin proteasome system (UPS). Drp1 depletion protects against OGDR induced mitochondrial damage and apoptosis. Meanwhile, parkin overexpression protects against OGDR induced apoptosis and mitochondrial dysfunction, which is attenuated by increased expression of Drp1. Our data demonstrate that parkin protects against OGDR insult through promoting degradation of Drp1. This neuroprotective potential of parkin-Drp1 pathway against OGDR insult will pave the way for developing novel neuroprotective agents for cerebral ischemia-reperfusion related disorders.


Asunto(s)
Dinaminas/metabolismo , Glucosa/deficiencia , Mitocondrias/enzimología , Neuronas/enzimología , Oxígeno/metabolismo , Daño por Reperfusión/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Hipoxia de la Célula , Línea Celular Tumoral , Dinaminas/genética , Regulación de la Expresión Génica , Ratones , Mitocondrias/patología , Neuronas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Interferencia de ARN , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Transducción de Señal , Transfección , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...