Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e18159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346064

RESUMEN

Recent breakthrough therapies have improved survival rates in non-small cell lung cancer (NSCLC), but a paradigm for prospective confirmation is still lacking. Patientdatasets were mainly downloaded from TCGA, CPTAC and GEO. We conducted downstream analysis by collecting metagenes and generated 42-gene subtype classifiers to elucidate biological pathways. Subsequently, scRNA, eRNA, methylation, mutation, and copy number variation were depicted from a phenotype perspective. Enhancing the clinical translatability of molecular subtypes, preclinical models including CMAP, CCLE, and GDSC were utilized for drug repositioning. Importantly, we verified the presence of previously described three phenotypes including bronchioid, neuroendocrine, and squamoid. Poor prognosis was seen in squamoid and neuroendocrine clusters for treatment-naive and immunotherapy populations. The neuroendocrine cluster was dominated by STK11 mutations and 14q13.3 amplifications, whose related methylated loci are predictive of immunotherapy. And the greatest therapeutic potential lies in the bronchioid cluster. We further estimated the relative cell abundance of the tumor microenvironment (TME), specific cell types could be reflected among three clusters. Meanwhile, the higher portion of immune cell infiltration belonged to bronchioid and squamoid, not the neuroendocrine cluster. In drug repositioning, MEK inhibitors resisted bronchioid but were squamoid-sensitive. To conceptually validate compounds/targets, we employed RNA-seq and CCK-8/western blot assays. Our results indicated that dinaciclib and alvocidib exhibited similar activity and sensitivity in the neuroendocrine cluster. Also, a lineage factor named KLF5 recognized by inferred transcriptional factors activity could be suppressed by verteporfin.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Reposicionamiento de Medicamentos , Neoplasias Pulmonares , Reposicionamiento de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Análisis de Secuencia de ARN/métodos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Mutación , Pronóstico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
Eur J Med Res ; 29(1): 273, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720348

RESUMEN

BACKGROUND: Previous studies suggested that zinc finger protein 536 (ZNF536) was abundant in the central brain and regulated neuronal differentiation. However, the role of ZNF536 in cancer has remained unclear. METHODS: ZNF536 mutation, copy number alteration, DNA methylation, and RNA expression were explored using public portals. Data from The Cancer Genome Atlas (TCGA) were utilized to analyze pathways and tumor microenvironment (TME), with a focus on prognosis in both TCGA and immunotherapy pan-cancer cohorts. Methylated ZNF536 from small cell lung cancer (SCLC) cell lines were utilized to train with probes for conducting enrichment analysis. Single-cell RNA profile demonstrated the sublocalization and co-expression of ZNF536, and validated its targets by qPCR. RESULTS: Genetic alterations in ZNF536 were found to be high-frequency and a single sample could harbor different variations. ZNF536 at chromosome 19q12 exerted a bypass effect on CCNE1, supported by CRISPR data. For lung cancer, ZNF536 mutation was associated with longer survival in primary lung adenocarcinoma (LUAD), but its prognosis was poor in metastatic LUAD and SCLC. Importantly, ZNF536 mutation and amplification had opposite prognoses in Stand Up To Cancer-Mark Foundation (SU2C-MARK) LUAD cohort. ZNF536 mutation altered the patterns of genomic alterations in tumors, and had distinct impacts on the signaling pathways and TME compared to ZNF536 amplification. Additionally, ZNF536 expression was predominantly in endocrine tumors and brain tissues. High-dimensional analysis supported this finding and further revealed regulators of ZNF536. Considering that the methylation of ZNF536 was involved in the synaptic pathway associated with neuroendocrine neoplasms, demonstrating both diagnostic and prognostic value. Moreover, we experimentally verified ZNF536 upregulated neuroendocrine markers. CONCLUSIONS: Our results showed that ZNF536 alterations in cancer, including variations in copy number, mutation, and methylation. We proved the involvement of ZNF536 in neuroendocrine regulation, and identified highly altered ZNF536 as a potential biomarker for immunotherapy.


Asunto(s)
Neoplasias Pulmonares , Mutación , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Pronóstico , Metilación de ADN , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica
3.
J Thorac Dis ; 16(1): 201-214, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38410612

RESUMEN

Background: Programmed cell death ligand 1 (PD-L1) blocking therapy has transformed the treatment of lung adenocarcinoma (LUAD), which has significantly changed the landscape of immunotherapy. We aimed to explore specific cell subpopulations to understand tumor progression and identify markers of response to PD-L1 blocking therapy. Methods: Bulk, fluorescence-activated cell sorting (FACS), and single-cell RNA (scRNA) sequencing were used to profile CXCL13, EPSTI1, and CDK1. The gene set variation analysis (GSVA) R package was utilized for score calculation, and prognostic analyses included receiver operating characteristic (ROC) curves, Cox proportional hazard models, and meta-analysis. Additionally, we analyzed tumor microenvironment (TME), genomics, compound perturbations, and clinical indicators. The high-dimensional analysis captured the intrinsic characteristics of the subpopulation. Furthermore, subpopulation differential genes were used for enrichment analysis of transcription factors and compounds. Results: Literature and website analyses supported the essential role of CXCL13, CDK1, and EPSTI1 in immunotherapy. This led us to focus specifically on LUAD by representing a pan-cancer profile of immune-sensitive genes. Logically, the high-characteristic population may consist of samples positive for CXCL13, EPSTI1, and CDK1. The three-gene signature was a favorable indicator of immunotherapy response in the Stand Up to Cancer-Mark Foundation (SU2C-MARK) LUAD cohort but showed a poor prognosis before treatment in the Lung Cancer Explorer (LCE) database. Further mechanistic exploration revealed specific mutations associated with the three-gene signature in SU2C-MARK LUAD, such as STK11. In The Cancer Genome Atlas (TCGA)-LUAD cohort, the high-scoring group exhibited a higher tumor mutational burden (TMB) and global methylation but a lower fraction genome altered (FGA) and estimated tumor purity. Moreover, dasatinib demonstrated sensitivity in the high-scoring group. The co-localization of the CXCL13, EPSTI1, and CDK1 subpopulation was validated through spatial transcriptome and immunohistochemical databases. Assessment of the subpopulation depicted high-resolution intercellular communication. Maintenance of specific pathways, such as TNF, CD74, and CD44, contributed to immunotherapy sensitivity. Finally, the subpopulation-enriched targets and drugs were confirmed through ConnectivityMap (CMAP) analysis and multi-omics, respectively. Conclusions: In this study, positive samples for CXCL13, EPSTI1, and CDK1 exhibited poor prognostic significance in treatment-naïve LUAD cases but demonstrated benefits from PD-L1 blockade and dasatinib therapies.

4.
Med Oncol ; 41(2): 42, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170412

RESUMEN

In lung squamous cell carcinoma (LUSC), current cancer vaccines show promising effects, despite a lack of benefit for a large number of patients. We first identified the tumor antigens into shared and private antigens, and determined the population by clustering analysis in public datasets. For vaccine development, The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) were collected. WGCNA method was furthermore applied to construct a consensus gene co-expression network based on TCGA and CPTAC datasets. The main analyses in bulk sequencing included survival, clinical features, tumor microenvironment (TME), and pathways enrichment. In addition, single-cell RNA (scRNA) analysis of cancer epithelium dissected consensus subtype. We identified the ideal population for cancer vaccines, and candidate neoantigens including AOC1, COL5A2, LGI2, and POSTN. According to subtype analysis, Lung squamous 1 (LSQ1) type exhibited a higher tumor mutational load (TMB) and copy number but no immune infiltration, whereas lung squamous 2 (LSQ2) tumors had a higher global methylation level and more fibroblasts but had less stemness. Meanwhile, trajectory analysis further revealed that the evolution of TME influenced prognosis. We emphasized specific pathways or targets with the potential for combination immunotherapy by consensus network and single-cell RNA analyses. Anti-androgen therapy has been validated in vitro experiments of LUSC as proof of concept. In conclusion, LSQ1 was linked to immune exclusion and might be utilized for vaccination, while LSQ2 was linked to immune dysfunction and could be used for programmed cell death protein 1 (PD1) blocking therapy.


Asunto(s)
Vacunas contra el Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Vacunas contra el Cáncer/uso terapéutico , Proteómica , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Pulmón , ARN , Pronóstico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...