Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Sci Immunol ; 9(93): eadj4775, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489352

RESUMEN

The gut microbiota promotes immune system development in early life, but the interactions between the gut metabolome and immune cells in the neonatal gut remain largely undefined. Here, we demonstrate that the neonatal gut is uniquely enriched with neurotransmitters, including serotonin, and that specific gut bacteria directly produce serotonin while down-regulating monoamine oxidase A to limit serotonin breakdown. We found that serotonin directly signals to T cells to increase intracellular indole-3-acetaldehdye and inhibit mTOR activation, thereby promoting the differentiation of regulatory T cells, both ex vivo and in vivo in the neonatal intestine. Oral gavage of serotonin into neonatal mice resulted in long-term T cell-mediated antigen-specific immune tolerance toward both dietary antigens and commensal bacteria. Together, our study has uncovered an important role for specific gut bacteria to increase serotonin availability in the neonatal gut and identified a function of gut serotonin in shaping T cell response to dietary antigens and commensal bacteria to promote immune tolerance in early life.


Asunto(s)
Microbioma Gastrointestinal , Serotonina , Animales , Ratones , Bacterias , Tolerancia Inmunológica , Antígenos
3.
Immunity ; 56(12): 2674-2676, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38091947

RESUMEN

Multiple sclerosis shows a strong sex bias, with unclear mechanisms. In this issue of Immunity, Peng et al. elucidate a female-biased increase in intestinal dopamine signaling that diminishes protective Lactobacillus and exacerbates inflammation in a mouse model of multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Animales , Ratones , Femenino , Dopamina , Sexismo , Inflamación
4.
J Agric Food Chem ; 71(48): 18735-18745, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37988686

RESUMEN

This study evaluated the chemical composition of rosemary water extract (RWE) and its influence on mechanisms by which the SARS-CoV-2 virus enters into cells as a potential route for reducing the risk of COVID-19 disease. Compounds in RWE were identified using UHPLC-MS/MS. The inhibitory effect of RWE was then evaluated on binding between the SARS-CoV-2 spike protein (S-protein) and ACE2 and separately on ACE2 activity/availability. Additionally, total phenolic content (TPC) and free radical scavenging capacities of RWE against HO•, ABTS•+, and DPPH• were assessed. Twenty-one compounds were tentatively identified in RWE, of which tuberonic acid hexoside was identified for the first time in rosemary. RWE dose of 33.3 mg of rosemary equivalents (RE)/mL suppressed the interaction between S-protein and ACE2 by 72.9%, while rosmarinic and caffeic acids at 3.3 µmol/mL suppressed the interaction by 36 and 55%, respectively. RWE at 5.0, 2.5, and 0.5 mg of RE/mL inhibited ACE2 activity by 99.5, 94.5, and 68.6%, respectively, while rosmarinic acid at 0.05 and 0.01 µmol/mL reduced ACE2 activity by 31 and 8%, respectively. RWE had a TPC value of 72.5 mg GAE/g. The results provide a mechanistic basis on which rosemary may reduce the risk of SARS-CoV-2 infection and the development of COVID-19.


Asunto(s)
COVID-19 , Rosmarinus , Humanos , Glicoproteína de la Espiga del Coronavirus , Rosmarinus/química , Enzima Convertidora de Angiotensina 2 , Espectrometría de Masas en Tándem , SARS-CoV-2 , Fenoles/farmacología , Radicales Libres , Unión Proteica
5.
bioRxiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37645894

RESUMEN

Despite the success of fructose as a low-cost food additive, recent epidemiological evidence suggests that high fructose consumption by pregnant mothers or during adolescence is associated with disrupted neurodevelopment 1-7 . An essential step in appropriate mammalian neurodevelopment is the synaptic pruning and elimination of newly-formed neurons by microglia, the central nervous system's (CNS) resident professional phagocyte 8-10 . Whether early life high fructose consumption affects microglia function and if this directly impacts neurodevelopment remains unknown. Here, we show that both offspring born to dams fed a high fructose diet and neonates exposed to high fructose exhibit decreased microglial density, increased uncleared apoptotic cells, and decreased synaptic pruning in vivo . Importantly, deletion of the high affinity fructose transporter SLC2A5 (GLUT5) in neonates completely reversed microglia dysfunction, suggesting that high fructose directly affects neonatal development. Mechanistically, we found that high fructose treatment of both mouse and human microglia suppresses synaptic pruning and phagocytosis capacity which is fully reversed in GLUT5-deficient microglia. Using a combination of in vivo and in vitro nuclear magnetic resonance- and mass spectrometry-based fructose tracing, we found that high fructose drives significant GLUT5-dependent fructose uptake and catabolism, rewiring microglia metabolism towards a hypo-phagocytic state. Importantly, mice exposed to high fructose as neonates exhibited cognitive defects and developed anxiety-like behavior which were rescued in GLUT5-deficient animals. Our findings provide a mechanistic explanation for the epidemiological observation that early life high fructose exposure is associated with increased prevalence of adolescent anxiety disorders.

6.
J Agric Food Chem ; 71(12): 4890-4900, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36940448

RESUMEN

Cinnamon (Cinnamomum verum J. Presl) bark and its extracts are popular ingredients added to food and supplement products. It has various health effects, including potentially reducing the risk of coronavirus disease-2019 (COVID-19). In our study, the bioactives in cinnamon water and ethanol extracts were chemically identified, and their potential in suppressing SARS-CoV-2 spike protein-angiotensin-converting enzyme 2 (ACE2) binding, reducing ACE2 availability, and scavenging free radicals was investigated. Twenty-seven and twenty-three compounds were tentatively identified in cinnamon water and ethanol extracts, respectively. Seven compounds, including saccharumoside C, two emodin-glucuronide isomers, two physcion-glucuronide isomers, and two type-A proanthocyanidin hexamers, were first reported in cinnamon. Cinnamon water and ethanol extracts suppressed the binding of SARS-CoV-2 spike protein to ACE2 and inhibited ACE2 activity in a dose-dependent manner. Cinnamon ethanol extract had total phenolic content of 36.67 mg gallic acid equivalents (GAE)/g and free radical scavenging activities against HO• and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) of 1688.85 and 882.88 µmol Trolox equivalents (TE)/g, which were significantly higher than those of the water extract at 24.12 mg GAE/g and 583.12 and 210.36 µmol TE/g. The free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) of cinnamon ethanol extract was lower than that of the water extract. The present study provides new evidence that cinnamon reduces the risk of SARS-CoV-2 infection and COVID-19 development.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Cinnamomum zeylanicum , Enzima Convertidora de Angiotensina 2 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glucurónidos , SARS-CoV-2 , Radicales Libres , Ácido Gálico , Etanol/química , Agua/química , Unión Proteica
7.
Microorganisms ; 11(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36985171

RESUMEN

There has been growing interest in the complex host-microbe interactions within the human gut and the role these interactions play in systemic health and disease. As an essential metabolic organ, the liver is intimately coupled to the intestinal microbial environment via the portal venous system. Our understanding of the gut-liver axis comes almost exclusively from studies of adults; the gut-liver axis in children, who have unique physiology and differing gut microbial communities, remains poorly understood. Here, we provide a comprehensive overview of common pediatric hepatobiliary conditions and recent studies exploring the contributions of the gut microbiota to these conditions or changes of the gut microbiota due to these conditions. We examine the current literature regarding the microbial alterations that take place in biliary atresia, pediatric non-alcoholic fatty liver disease, Wilson's disease, cystic fibrosis, inflammatory bowel disease, and viral hepatitis. Finally, we propose potential therapeutic approaches involving modulation of the gut microbiota and the gut-liver axis to mitigate the progression of pediatric liver disease.

8.
Pediatr Res ; 93(5): 1375-1382, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35986143

RESUMEN

BACKGROUND: In utero transmission of SARS coronavirus 2 (SARS-CoV-2) has not been fully investigated. We investigated whether newborns of mothers with COVID-19 during pregnancy might harbor SARS-CoV-2 in the gastrointestinal tract. METHODS: This cohort study investigated stool from 14 newborns born at 25-41 weeks admitted at delivery to our urban academic hospital whose mothers had COVID-19 during pregnancy. Eleven mothers had COVID-19 resolved more than 10 weeks before delivery. Newborn stool was evaluated for SARS-CoV-2 RNA, Spike protein, and induction of inflammatory cytokines interleukin-6 (IL-6) and interferon-γ (IFN-γ) in macrophages. RESULTS: Despite negative SARS CoV-2 nasal PCRs from all newborns, viral RNAs and Spike protein were detected in the stool of 11 out of 14 newborns as early as the first day of life and increased over time in 6. Stool homogenates from all 14 newborns elicited elevated inflammatory IL-6 and IFN-γ from macrophages. Most newborns were clinically well except for one death from gestational autoimmune liver disease and another who developed necrotizing enterocolitis. CONCLUSIONS: These findings suggest in utero transmission of SARS-CoV-2 and possible persistent intestinal viral reservoirs in the newborns. Further investigation is required to understand the mechanisms and their clinical implications. IMPACT: SARS-CoV-2 RNAs or Spike protein was detected in the stool of 11 out of 14 preterm newborns born to mothers with resolved COVID-19 weeks prior to delivery despite negative newborn nasal PCR swabs. These novel findings suggest risk of in utero SARS-CoV-2 transmission to the fetal intestine during gestation. The presence of SARS-CoV-2 RNAs and Spike protein in the intestines of newborns may potentially impact the development of the gut microbiome and the immune system; the long-term health impact on the preterm infants should be further investigated.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Embarazo , Femenino , Recién Nacido , Humanos , SARS-CoV-2 , Estudios de Cohortes , ARN Viral , Glicoproteína de la Espiga del Coronavirus , Interleucina-6 , Recien Nacido Prematuro , Complicaciones Infecciosas del Embarazo/diagnóstico , Transmisión Vertical de Enfermedad Infecciosa
9.
J Agric Food Chem ; 70(45): 14403-14413, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36318658

RESUMEN

COVID-19 is initiated by binding the SARS-CoV-2 spike protein to angiotensin-converting enzyme 2 (ACE2) on host cells. Food factors capable of suppressing the binding between the SARS-CoV-2 spike protein and ACE2 or reducing the ACE2 availability through ACE2 inhibitions may potentially reduce the risk of SARS-CoV-2 infection and COVID-19. In this study, the chemical compositions of clove water and ethanol extracts were investigated, along with their potentials in suppressing SARS-CoV-2 spike protein-ACE2 binding, reducing ACE2 availability, and scavenging free radicals. Thirty-four compounds were tentatively identified in the clove water and ethanol extracts, with six reported in clove for the first time. Clove water and ethanol extracts dose-dependently suppressed SARS-CoV-2 spike protein binding to ACE2 and inhibited ACE2 activity. The water extract had stronger inhibitory effects than the ethanol extract on a dry weight basis. The clove water extract also had more potent free radical scavenging activities against DPPH• and ABTS•+ (536.9 and 3525.06 µmol TE/g, respectively) than the ethanol extract (58.44 and 2298.01 µmol TE/g, respectively). In contrast, the ethanol extract had greater total phenolic content (TPC) and relative HO• scavenging capacity (HOSC) values (180.03 mg GAE/g and 2181.08 µmol TE/g, respectively) than the water extract (120.12 mg GAE/g and 1483.02 µmol TE/g, respectively). The present study demonstrated the potential of clove in reducing the risk of SARS-CoV-2 infection and COVID-19 development.


Asunto(s)
COVID-19 , Syzygium , Humanos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Syzygium/metabolismo , SARS-CoV-2 , Peptidil-Dipeptidasa A/química , Unión Proteica , Sitios de Unión , Radicales Libres , Agua , Etanol
10.
Gut Microbes ; 14(1): 2105609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35915556

RESUMEN

The gut microbiome is intricately coupled with immune regulation and metabolism, but its role in Coronavirus Disease 2019 (COVID-19) is not fully understood. Severe and fatal COVID-19 is characterized by poor anti-viral immunity and hypercoagulation, particularly in males. Here, we define multiple pathways by which the gut microbiome protects mammalian hosts from SARS-CoV-2 intranasal infection, both locally and systemically, via production of short-chain fatty acids (SCFAs). SCFAs reduced viral burdens in the airways and intestines by downregulating the SARS-CoV-2 entry receptor, angiotensin-converting enzyme 2 (ACE2), and enhancing adaptive immunity via GPR41 and 43 in male animals. We further identify a novel role for the gut microbiome in regulating systemic coagulation response by limiting megakaryocyte proliferation and platelet turnover via the Sh2b3-Mpl axis. Taken together, our findings have unraveled novel functions of SCFAs and fiber-fermenting gut bacteria to dampen viral entry and hypercoagulation and promote adaptive antiviral immunity.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , Antivirales/uso terapéutico , Ácidos Grasos Volátiles , Masculino , Mamíferos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2
11.
Sci Immunol ; 7(72): eabh3816, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35687695

RESUMEN

The gut microbiome elicits antigen-specific immunoglobulin G (IgG) at steady state that cross-reacts to pathogens to confer protection against systemic infection. The role of gut microbiome-specific IgG antibodies in the development of the gut microbiome and immunity against enteric pathogens in early life, however, remains largely undefined. In this study, we show that gut microbiome-induced maternal IgG is transferred to the neonatal intestine through maternal milk via the neonatal Fc receptor and directly inhibits Citrobacter rodentium colonization and attachment to the mucosa. Enhanced neonatal immunity against oral C. rodentium infection was observed after maternal immunization with a gut microbiome-derived IgG antigen, outer membrane protein A, or induction of IgG-inducing gut bacteria. Furthermore, by generating a gene-targeted mouse model with complete IgG deficiency, we demonstrate that IgG knockout neonates are more susceptible to C. rodentium infection and exhibit alterations of the gut microbiome that promote differentiation of interleukin-17A-producing γδ T cells in the intestine, which persist into adulthood and contribute to increased disease severity in a dextran sulfate sodium-induced mouse model of colitis. Together, our studies have defined a critical role for maternal gut microbiome-specific IgG antibodies in promoting immunity against enteric pathogens and shaping the development of the gut microbiome and immune cells in early life.


Asunto(s)
Colitis , Infecciones por Enterobacteriaceae , Microbioma Gastrointestinal , Animales , Citrobacter rodentium , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/prevención & control , Inmunoglobulina G , Ratones
12.
Science ; 373(6558): 967-968, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34446596
13.
Microorganisms ; 8(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333813

RESUMEN

Pregnancy induces unique changes in maternal immune responses and metabolism. Drastic physiologic adaptations, in an intricately coordinated fashion, allow the maternal body to support the healthy growth of the fetus. The gut microbiome plays a central role in the regulation of the immune system, metabolism, and resistance to infections. Studies have reported changes in the maternal microbiome in the gut, vagina, and oral cavity during pregnancy; it remains unclear whether/how these changes might be related to maternal immune responses, metabolism, and susceptibility to infections during pregnancy. Our understanding of the concerted adaption of these different aspects of the human physiology to promote a successful pregnant remains limited. Here, we provide a comprehensive documentation and discussion of changes in the maternal microbiome in the gut, oral cavity, and vagina during pregnancy, metabolic changes and complications in the mother and newborn that may be, in part, driven by maternal gut dysbiosis, and, lastly, common infections in pregnancy. This review aims to shed light on how dysregulation of the maternal microbiome may underlie obstetrical metabolic complications and infections.

14.
Curr Opin Microbiol ; 56: 30-37, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32634598

RESUMEN

Early life is a critical time window for the neonatal gut to be progressively populated with different bacterial species that collectively promote gut maturation. A fully developed and healthy gut microbiome in neonates is an important driver for the development of other aspects of health. Unlike the relatively stable gut microbiome in adults, the developing gut microbiome in neonates exhibits higher plasticity and adaptability. This also underscores the unique window of opportunity for intervention or preventive measures to improve long-term health through modulations of the gut microbiome in early life. Better understanding of the neonatal gut microbiome - how it arises and how it impacts immune cell development - will help us appreciate the underpinnings of immune-related diseases. Here, we examine recent findings on the neonatal gut microbiome and discuss their implications for understanding this important driver of the maturation of the immune system and immunity against infections in early life.


Asunto(s)
Microbioma Gastrointestinal , Recién Nacido/inmunología , Intestinos/inmunología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Humanos , Inmunidad , Recién Nacido/crecimiento & desarrollo , Intestinos/crecimiento & desarrollo , Intestinos/microbiología
15.
Cell Host Microbe ; 27(1): 11-13, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31951821

RESUMEN

The neonatal gut microbiome undergoes dynamic changes in response to many nutritional and environmental variables. A recent study by Singer et al. in Nature Medicine elucidates several mechanisms to inhibit the expansion of gut-derived pathobionts in a dysbiotic neonatal gut and prevent these pathobionts from disseminating systemically and causing sepsis in neonatal mice.


Asunto(s)
Microbioma Gastrointestinal , Sepsis , Animales , Animales Recién Nacidos , Disbiosis , Ratones
16.
Nat Commun ; 10(1): 660, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30737385

RESUMEN

Microfold cells (M-cells) are specialized cells of the intestine that sample luminal microbiota and dietary antigens to educate the immune cells of the intestinal lymphoid follicles. The function of M-cells in systemic inflammatory responses are still unclear. Here we show that epithelial non-canonical NFkB signaling mediated by NFkB-inducing kinase (NIK) is highly active in intestinal lymphoid follicles, and is required for M-cell maintenance. Intestinal NIK signaling modulates M-cell differentiation and elicits both local and systemic IL-17A and IgA production. Importantly, intestinal NIK signaling is active in mouse models of colitis and patients with inflammatory bowel diseases; meanwhile, constitutive NIK signaling increases the susceptibility to inflammatory injury by inducing ectopic M-cell differentiation and a chronic increase of IL-17A. Our work thus defines an important function of non-canonical NFkB and M-cells in immune homeostasis, inflammation and polymicrobial sepsis.


Asunto(s)
FN-kappa B/metabolismo , Animales , Linfocitos B/metabolismo , Western Blotting , Colitis/inmunología , Colitis/metabolismo , Colon/metabolismo , Colon/patología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Inmunoglobulina A/metabolismo , Interleucina-17/metabolismo , Intestinos/inmunología , Ratones , Proteínas Serina-Treonina Quinasas , ARN Ribosómico 16S/genética , Sepsis/genética , Sepsis/metabolismo , Transducción de Señal/fisiología
17.
Cell Host Microbe ; 25(2): 313-323.e4, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30686564

RESUMEN

Owing to immature immune systems and impaired colonization resistance mediated by the microbiota, infants are more susceptible to enteric infections. Maternal antibodies can provide immunity, with maternal vaccination offering a protective strategy. We find that oral infection of adult females with the enteric pathogen Citrobacter rodentium protects dams and offspring against oral challenge. Parenteral immunization of dams with heat-inactivated C. rodentium reduces pathogen loads and mortality in offspring but not mothers. IgG, but not IgA or IgM, transferred through breast milk to the intestinal lumen of suckling offspring, coats the pathogen and reduces intestinal colonization. Protective IgG largely recognizes virulence factors encoded within the locus of enterocyte effacement (LEE) pathogenicity island, including the adhesin Intimin and T3SS filament EspA, which are major antigens conferring protection. Thus, pathogen-specific IgG in breast milk induced during maternal infection or immunization protects neonates against infection with an attaching and effacing pathogen.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Citrobacter rodentium/inmunología , Infecciones por Enterobacteriaceae/prevención & control , Inmunización Pasiva , Inmunoglobulina G/inmunología , Leche/inmunología , Animales , Animales Recién Nacidos , Antígenos Bacterianos/inmunología , Modelos Animales de Enfermedad , Factores Inmunológicos/inmunología , Ratones , Análisis de Supervivencia
18.
Mol Oral Microbiol ; 34(2): 27-38, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30632295

RESUMEN

Neutrophils are phagocytic innate immune cells essential for killing bacteria via activation of a wide variety of effector responses and generation of large amounts of reactive oxygen species (ROS). Majority of the ROS in neutrophils is generated by activation of the superoxide-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Independent of their anti-microbial function, NADPH oxidase-derived ROS have emerged as key regulators of host immune responses and neutrophilic inflammation. Data from patients with inherited defects in the NADPH oxidase subunit alleles that ablate its enzyme function as well as mouse models demonstrate profound dysregulation of host inflammatory responses, neutrophil hyper-activation and tissue damage in response to microbial ligands or tissue trauma. A large body of literature now demonstrates how oxidants function as essential signaling molecules that are essential for the regulation of neutrophil responses during priming, degranulation, neutrophil extracellular trap formation, and apoptosis, independent of their role in microbial killing. In this review we summarize how NADPH oxidase-derived oxidants modulate neutrophil function in a cell intrinsic manner and regulate host inflammatory responses. In addition, we summarize studies that have elucidated possible roles of oxidants in neutrophilic responses within the oral mucosa and periodontal disease.


Asunto(s)
NADPH Oxidasas/inmunología , NADPH Oxidasas/metabolismo , Neutrófilos/enzimología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Apoptosis , Bacterias/inmunología , Bacterias/patogenicidad , Trampas Extracelulares , Enfermedad Granulomatosa Crónica/inmunología , Humanos , Inmunidad Innata , Inflamación/inmunología , Ratones , Mucosa Bucal/inmunología , NADPH Oxidasa 2 , Estrés Oxidativo , Enfermedades Periodontales/inmunología , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Estallido Respiratorio/inmunología
19.
Blood ; 131(21): 2367-2378, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29618478

RESUMEN

The phagocyte reduced NAD phosphate (NADPH) oxidase generates superoxide, the precursor to reactive oxygen species (ROS) that has both antimicrobial and immunoregulatory functions. Inactivating mutations in NADPH oxidase alleles cause chronic granulomatous disease (CGD), characterized by enhanced susceptibility to life-threatening microbial infections and inflammatory disorders; hypomorphic NADPH oxidase alleles are associated with autoimmunity. Impaired apoptotic cell (AC) clearance is implicated as an important contributing factor in chronic inflammation and autoimmunity, but the role of NADPH oxidase-derived ROS in this process is incompletely understood. Here, we demonstrate that phagocytosis of AC (efferocytosis) potently activated NADPH oxidase in mouse peritoneal exudate macrophages (PEMs). ROS generation was dependent on macrophage CD11b, Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response 88 (MyD88), and was also regulated by phosphatidylinositol 3-phosphate binding to the p40 phox oxidase subunit. Maturation of efferosomes containing apoptotic neutrophils was significantly delayed in CGD PEMs, including acidification and acquisition of proteolytic activity, and was associated with slower digestion of apoptotic neutrophil proteins. Treatment of wild-type macrophages with the vacuolar-type H+ ATPase inhibitor bafilomycin also delayed proteolysis within efferosomes, showing that luminal acidification was essential for efficient digestion of efferosome proteins. Finally, cross-presentation of AC-associated antigens by CGD PEMs to CD8 T cells was increased. These studies unravel a key role for the NADPH oxidase in the disposal of ACs by inflammatory macrophages. The oxidants generated promote efferosome maturation and acidification that facilitate the degradation of ingested ACs.


Asunto(s)
Apoptosis , Macrófagos/metabolismo , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Animales , Antígeno CD11b/metabolismo , Activación Enzimática , Macrófagos/inmunología , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Neutrófilos/inmunología , Peroxidasa/metabolismo , Fagocitosis , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
20.
Immunol Rev ; 279(1): 70-89, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28856738

RESUMEN

The intestinal tract of mammals is colonized by a large number of microorganisms including trillions of bacteria that are referred to collectively as the gut microbiota. These indigenous microorganisms have co-evolved with the host in a symbiotic relationship. In addition to metabolic benefits, symbiotic bacteria provide the host with several functions that promote immune homeostasis, immune responses, and protection against pathogen colonization. The ability of symbiotic bacteria to inhibit pathogen colonization is mediated via several mechanisms including direct killing, competition for limited nutrients, and enhancement of immune responses. Pathogens have evolved strategies to promote their replication in the presence of the gut microbiota. Perturbation of the gut microbiota structure by environmental and genetic factors increases the risk of pathogen infection, promotes the overgrowth of harmful pathobionts, and the development of inflammatory disease. Understanding the interaction of the microbiota with pathogens and the immune system will provide critical insight into the pathogenesis of disease and the development of strategies to prevent and treat inflammatory disease.


Asunto(s)
Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Inmunidad , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , Animales , Homeostasis , Humanos , Mucosa Intestinal/microbiología , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA