Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Analyst ; 149(3): 876-884, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38175666

RESUMEN

Specific and rapid detection of live Staphylococcus aureus (S.A) in environmental and food samples is critically important for protecting human health. In order to fulfill this purpose, two kinds of novel egg yolk antibody (IgY) immobilized immunomagnetic beads (IMBs; mSiO2-IgY and mMOF-IgY), with core-shell mSiO2 and mMOF as substrate, were prepared for selectively enriching S.A from samples. Furthermore, the IMBs with captured S.A were collected and re-dissolved in 0.5 mL PBS. After that, a cotton swab coated with sodium dodecylsulfate (SDS) was put in the solution to lyse S.A cells and emit ATP bioluminescence of the luciferin/luciferase system. Finally, a portable bioluminescence detector was used for quantification of ATP corresponding to S.A concentration. The results demonstrated that mMOF-IgY can enrich more S.A than mSiO2-IgY and emit a stronger signal. The reasons may be due to the higher immobilization amount of IgY on the IMBs. Under optimal conditions, the calibration line of S.A concentration was 10-105 CFU mL-1 by mMOF-IgY within 30 min. The low detection limit of S.A was 3 CFU mL-1. The results demonstrated that the assay takes much shorter time than plate counting. Its portability and excellent detection capability are suitable for rapid monitoring of specific pathogens in foods.


Asunto(s)
Estructuras Metalorgánicas , Staphylococcus aureus , Humanos , Animales , Yema de Huevo , Anticuerpos , Inmunoglobulinas , Fenómenos Magnéticos , Adenosina Trifosfato , Pollos
2.
Molecules ; 27(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296725

RESUMEN

In this work, polyacrylonitrile/aminated polymeric nanosphere (PAN/APN) nanofibers were prepared by electrospinning of monodispersed aminated polymeric nanospheres (APNs) for removal of Cr(VI) from aqueous solution. Characterization results showed that obtained PAN/APNs possessed nitrogen functionalization. Furthermore, the adsorption application results indicated that PAN/APN nanofibers exhibited a high adsorption capacity of 556 mg/g at 298 K for Cr(VI) removal. The kinetic data showed that the adsorption process fits the pseudo-second order. A thermodynamic study revealed that the adsorption of Cr(VI) was spontaneous and endothermic. The coexisting ions Na+, Ca2+, K+, Cl-, NO3- and PO43- had little influence on Cr(VI) adsorption, while SO42- in solution dramatically decreased the removal performance. In the investigation of the removal mechanism, relative results indicated that the adsorption behavior possibly involved electrostatic adsorption, redox reaction and chelation. PAN/APN nanofibers can detoxify Cr(VI) to Cr(III) and subsequently chelate Cr(III) on its surface. The unique structure and nitrogen functionalization of PAN/APN nanofibers make them novel and prospective candidates in heavy metal removal.


Asunto(s)
Metales Pesados , Nanofibras , Nanosferas , Contaminantes Químicos del Agua , Nanofibras/química , Contaminantes Químicos del Agua/química , Cromo/química , Adsorción , Cinética , Polímeros , Iones , Nitrógeno
3.
ACS Appl Mater Interfaces ; 8(11): 7194-204, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26942712

RESUMEN

We have demonstrated a facile and controllable synthesis of monodispersed N-doped hollow mesoporous carbon nanospheres (N-HMCSs) and yolk-shell hollow mesoporous carbon nanospheres (N-YSHMCSs) by a modified "silica-assisted" route. The synthesis process can be carried out by using resorcinol-formaldehyde resin as a carbon precursor, melamine as a nitrogen source, hexadecyl trimethylammonium chloride as a template, and silicate oligomers as structure-supporter. The morphological (i.e., particle size, shell thickness, cavity size, and core diameter) and textural features of the carbon nanospheres are easily controlled by varying the amount of ammonium. The resultant carbon nanospheres possess high surface areas (up to 2464 m(2) g(-1)), large pore volumes (up to 2.36 cm(3) g(-1)), and uniform mesopore size (∼2.4 nm for N-HMCSs, ∼ 4.5 nm for N-YSHMCSs). Through combining the hollow mesoporous structure, high porosity, large surface area, and N heteroatomic functionality, the as-synthesized N-doped hollow-structured carbon nanospheres manifest excellent supercapacitor performance with high capacitance (up to 240 F/g), favorable capacitance retention (97.0% capacitive retention after 5000 cycles), and high energy density (up to 11.1 Wh kg(-1)).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...