Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 609
Filtrar
1.
JAMA ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361329

RESUMEN

A healthy 9-year-old had 10 days of nonproductive cough without fever, wheeze, chest pain, or abdominal pain but with diminished breath sounds in the right lower lung field. Results of laboratory testing were unremarkable; computed tomography revealed a fat-density mass in the right anterior mediastinum. What is the diagnosis and what would you do next?

2.
Brain Res ; : 149272, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395645

RESUMEN

OBJECTIVE: Adolescents with depression is characterized by high rates of recurrence and functional impairment, with a significant association with suicide risk. Antidepressants are commonly prescribed to treat depression, yet few reproducible neurobiological markers for depression and antidepressant treatment response have been identified. Therefore, discovering a stable and reliable neurobiological marker holds significant value for both the clinical diagnosis and treatment of depression in adolescents. METHODS: One hundred and seven patients with major depressive disorder (MDD group, 30 males, 77 females, mean age: 14.80 years), and 25 healthy subjects (HC group, 13 males, 12 females, mean age: 15.72 years) were recruited to perform a two-choice oddball task related to negative emotional cues. All participants completed a self-administered questionnaire to gather demographic information. A trained psychiatrist administered the Hamilton Depression Scale (HAMD-17) to assess depression severity. Of the 107 adolescents with depression, 61 received antidepressant medication for 8 weeks, and 61 of these patients were followed up. Multichannel EEG was recorded continuously from 64 scalp electrodes using the Curry 8 system. EEG signal preprocessing and analysis was performed offline using the EEGLAB toolbox in MATLAB. The ERP component characteristics associated with emotional processing were extracted from the difference waves and statistically analyzed. RESULTS: Adolescents with depression exhibited significantly larger P300 amplitudes than healthy controls in response to both neutral and negative emotional cues. Following sertraline treatment, both depression scores and P300 amplitudes decreased significantly in adolescents with depression. Moreover, a strong positive correlation was observed between changes in depression scores and changes in P300 amplitude in response to negative emotional cues before and after treatment. CONCLUSIONS: Changes in neural reactivity to negative emotional stimuli among adolescents with depression can be selectively modulated by sertraline and are significantly associated with improvements in depressive symptoms. SIGNIFICANCE: Changes in P300 amplitude to negative emotional stimuli significantly correlate with treatment responsiveness to sertraline in adolescents with depression.

3.
Cancer Drug Resist ; 7: 34, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39403599

RESUMEN

Head and neck cancer (HNC) is ranked as the sixth most common malignant tumor, and the overall survival rate with current treatment options remains concerning, primarily due to drug resistance that develops following antitumor therapy. Recent studies indicate that non-coding RNAs play a crucial role in drug resistance among HNC patients. This article systematically reviews the current research landscape, explores novel targets and treatment strategies related to non-coding RNAs and HNC resistance, raises some unresolved issues, and discusses five promising research directions in this field: ferroptosis, nanomedicine, exosomes, proteolysis-targeting chimeras (PROTACs), and artificial intelligence. We hope that our work will contribute to advancing research on overcoming HNC resistance through the regulation of non-coding RNAs.

4.
Cancer Inform ; 23: 11769351241289719, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39421722

RESUMEN

Objectives: Patients with intermediate or advanced hepatocellular carcinoma (HCC) require repeated disease monitoring, prognosis assessment and treatment planning. In 2018, a novel machine learning methodology "survival path" (SP) was developed to facilitate dynamic prognosis prediction and treatment planning. One year after, a deep learning approach called Dynamic Deephit was developed. The performance of the two state-of-art models in dynamic prognostication have not been compared. Methods: We trained and tested the SP and Dynamic DeepHit models in a large cohort of 2511 HCC patients using time-series data. The time-series data were converted into data of time slices, with an interval of three months. The time-dependent c-index for OS at given prediction time (t = 1, 6, 12, 18 months) and evaluation time (∆t = 3, 6, 9, 12, 18, 24, 36, 48 months) were compared. Results: The comparison between SP model and Dynamic DeepHit-HCC model showed the latter had significant better performance at the time of initial admission. The time-dependent c-index of Dynamic DeepHit-HCC model gradually decreased with the extension of time (from 0.756 to 0.639 in the training set; from 0.787 to 0.661 in internal testing set; from 0.725 to 0.668 in multicenter testing set); while the time-dependent c-index of SP model displayed an increased trend (from 0.665 to 0.748 in the training set; from 0.608 to 0.743 in internal testing set; from 0.643 to 0.720 in multicenter testing set). When the prediction time comes to 6 months or later since initial treatment, the survival path model outperformed the dynamic DeepHit model at late evaluation times (∆t > 12 months). Conclusions: This research highlighted the unique strengths of both models. The SP model had advantage in long term prediction while the Dynamic DeepHit-HCC model had advantages in prediction at near time points. Fine selection of models is needed in dealing with different scenarios.

5.
Biosens Bioelectron ; 267: 116753, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39270362

RESUMEN

Cerebrospinal fluid (CSF)-based pathogen or biochemical testing is the standard approach for clinical diagnosis of various meningitis. However, misdiagnosis and missed diagnosis always occur due to the shortages of unusual clinical manifestations and time-consuming shortcomings, low sensitivity, and poor specificity. Here, for the first time, we propose a simple and reliable CSF-induced SERS platform assisted with machine learning (ML) for the diagnosis and identification of various meningitis. Stable and reproducible SERS spectra are obtained within 30 s by simply mixing the colloidal silver nanoparticles (Ag NPs) with CSF sample, and the relative standard deviation of signal intensity is achieved as low as 2.1%. In contrast to conventional salt agglomeration agent-induced irreversible aggregation for achieving Raman enhancement, a homogeneous and dispersed colloidal solution is observed within 1 h for the mixture of Ag NPs/CSF (containing 110-140 mM chloride), contributing to excellent SERS stability and reproducibility. In addition, the interaction processes and potential enhancement mechanisms of different Ag colloids-based SERS detection induced by CSF sample or conventional NaCl agglomeration agents are studied in detail through in-situ UV-vis absorption spectra, SERS analysis, SEM and optical imaging. Finally, an ML-assisted meningitis classification model is established based on the spectral feature fusion of characteristic peaks and baseline. By using an optimized KNN algorithm, the classification accuracy of autoimmune encephalitis, novel cryptococcal meningitis, viral meningitis, or tuberculous meningitis could be reached 99%, while an accuracy value of 68.74% is achieved for baseline-corrected spectral data. The CSF-induced SERS detection has the potential to provide a new type of liquid biopsy approach in the fields of diagnosis and early detection of various cerebral ailments.

6.
Cell Signal ; 124: 111419, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293744

RESUMEN

Cancer cells require plentiful cholesterol for membrane biogenesis and other functional needs due to fast proliferating, leading to the interaction of cholesterol or its metabolites with cancer-related pathways. However, the impact of long-lasting high cholesterol concentrations on tumorigenesis and its underlying mechanisms remains largely unexplored. To the best of our knowledge, this study is the first to establish a cholesterol-resistant ovarian cancer cells, whose intracellular total cholesterol level up to 6-8 mmol/L. We confirmed that high cholesterol facilitated the progression of ovarian cancer in vitro and in vivo. Notably, our findings revealed significant upregulation of collagen type V alpha 1 chain (COL5A1) expression in cholesterol-resistant ovarian cancer cells and human ovarian cancer tissue, which was depended on FAK/Src activation. Mechanistically, PARP1 directly bound to FAK in response to activate FAK/Src/COL5A1 signaling. Intriguingly, COL5A1 depletion significantly impeded the tumorigenesis of these cells, concomitant with a decrease in epithelial-mesenchymal transition (EMT) progression. In conclusion, PARP1/FAK/COL5A1 signaling activation facilitated progression of cholesterol-resistant ovarian cancer cells by promoting EMT, thereby broadening a new therapeutic opportunity.

7.
Alzheimers Dement ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320044

RESUMEN

INTRODUCTION: Electro-acupuncture (EA) has demonstrated potential in improving mild-to-moderate dementia in clinics, but the underlying scientific target remains unclear. METHODS: EA was administered to APP/PS1 Alzheimer's disease (AD) mice, with untreated AD, and wild type (WT) mice serving as controls. The efficacy of EA was assessed by the Morris water maze cognitive functional tests. Brain magnetic resonance imaging-positron emission tomography (PET) scans using [18F]TZ4877 targeting sphingosine-1-phosphate receptor 1 (S1PR1) and [18F]AV45 targeting amyloid beta fibrils were conducted. The correlation between regional brain PET quantifications and cognitive functions was analyzed. RESULTS: EA significantly improved cognitive and memory functions of AD (p  = 0.04) and reduced the uptake of [18F]TZ4877 in the cortex (p  = 0.02) and hippocampus (p  = 0.03). Immunofluorescence confirmed colocalizations of S1PR1 with glial fibrillary acidic protein and ionized calcium-binding adaptor molecule-1. Furthermore, immunohistochemistry showed a significant reduction of interleukin 1ß and tumor necrosis factor α after EA treatment. DISCUSSION: EA may reverse AD by suppressing neuroinflammation, and the PET imaging of S1PR1 seemed potent in evaluating the treatment for AD patients HIGHLIGHTS: Electro-acupuncture (EA) was administered to APP/PS1 Alzheimer's disease (AD) mice, with untreated AD, and wild type (WT) mice serving as controls. The efficacy of EA was assessed by the Morris water maze cognitive functional tests and positron emission tomography (PET) imaging quantifications. PET tracer [18F]AV45 was used to detect amyloid beta deposition. An increased uptake of [18F]AV45 was found in AD compared to WT mice, with significance observed only in the cortex and not in the hippocampus. EA treatment exhibited a trend toward reduced [18F]AV45 uptake in AD mouse brains post-treatment. However, statistical difference was not attained in most brain regions. EA "Baihui (DU20) and Sishencong (EX-HN1)" significantly improved cognitive and memory functions of AD (p = 0.04). Brain magnetic resonance imaging p(MRI)-positron emission tomography (PET) quantifications revealed that significantly reduced the uptake of [18F]TZ4877 in the cortex (p = 0.02) and hippocampus (p = 0.03) after EA treatment. The correlation between PET quantifications and cognitive functions was analyzed and the most notable correlations were found between escape latency (reaction cognitive and memory behavior) and volume distribution (VT) quantifications of [18F]TZ4877. VT quantifications of [18F]TZ4877 in key brain regions for cognitive and memory ability, such as the cortex and hippocampus, positively correlated with platform latency (cortex p < 0.01, r = 0.7102; hippocampus p < 0.01, r = 0.6891). Immunofluorescence confirmed colocalizations of S1PR1 with glial fibrillary acidic protein and ionized calcium-binding adaptor molecule-1 in the AD brain. And the EA treatment significantly reduced the signals in the cortex and hippocampus. Immunohistochemistry showed a significant reduction of interleukin 1ß and tumor necrosis factor α after EA treatment. EA reversed AD by suppressing neuroinflammation in the cortex and hippocampus. The S1PR1 targeting PET tracer [18F]TZ4877 showed promise in evaluating the pathological progression of AD in clinical settings.

8.
PLoS One ; 19(9): e0306363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39312565

RESUMEN

During the transformation and upgrading of enterprises, executives' social capital provides useful access to resources through merger and acquisition (M&A) strategies. This study examines 145 M&A events of Chinese listed media enterprises undergoing transformation and upgrading as research samples. It empirically analyzed the impact of executives' social capital on short-term and long-term M&A performance from three aspects: corporate social capital (CSC), political social capital (PSC), and financial social capital (FSC). It also confirmed the moderating effect of corporate ownership structure, exploring the mechanism of executives' social capital during the period of transformation and upgrading. Based on the empirical results, we found that: (1) CSC significantly enhances short-term M&A performance but has no significant effect on long-term performance; (2) PSC positively influences both short-term and long-term M&A performance. State-owned media enterprises may gain relatively fewer benefits from PSC in the short term after M&A, but they can accrue more significant benefits in the long term post-M&A; (3) FSC does not affect short-term M&A performance but exerts a negative impact on long-term performance. The negative effect is even more pronounced in state-owned enterprises. This study complements existing research on executives' social capital during the transformation and upgrading of enterprises. It provides a reference for media enterprises in China and other emerging economies to utilize executives' social capital.

9.
Plant J ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312631

RESUMEN

In plants, RNA silencing constitutes a strong defense against viral infection, which viruses counteract with RNA-silencing suppressors (RSSs). Understanding the interactions between viral RSSs and host factors is crucial for elucidating the molecular arms race between viruses and host plants. We report that the helicase motif (Hel) of the replicase encoded by apple stem grooving virus (ASGV)-the main virus affecting pear trees in China-is an RSS that can inhibit both local and systemic RNA silencing, possibly by binding double-stranded (ds) siRNA. The transcription factor related to ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 from pear (PbRAV1) enters the cytoplasm and binds Hel through its C terminus, thereby attenuating its RSS activity by reducing its binding affinity to 21- and 24-nt ds siRNA, and suppressing ASGV infection. PbRAV1 can also target p24, an RSS encoded by grapevine leafroll-associated virus 2 (GLRaV-2), with similar negative effects on p24's suppressive function and inhibition of GLRaV-2 infection. Moreover, like the positive role of the PbRAV1 homolog from grapevine (VvRAV1) in p24's previously reported RSS activity, ASGV Hel can also hijack VvRAV1 and employ the protein to sequester 21-nt ds siRNA, thereby enhancing its own RSS activity and promoting ASGV infection. Furthermore, PbRAV1 neither interacts with CP, an RSS encoded by grapevine inner necrosis virus, nor has any obvious effect on CP's RSS activity. Our results identify an RSS encoded by ASGV and demonstrate that PbRAV1, representing a novel type of RAV transcription factor, plays a defensive role against viral infection by targeting viral RSSs.

10.
11.
Circulation ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319450

RESUMEN

BACKGROUND: Remote ischemic preconditioning (RIPC) has 2 time windows for organ protection: acute and delayed. Previous studies have mainly focused on the organoprotective effects of acute RIPC. We aimed to determine whether delayed RIPC can reduce the occurrence of acute kidney injury (AKI) and postoperative complications in patients undergoing cardiac surgery. METHODS: This prospective, single-center, double-blind, randomized controlled trial involved 509 patients at high risk for AKI who were scheduled for elective cardiac surgery requiring cardiopulmonary bypass. Patients were randomized to receive RIPC (4 cycles of 5-minute inflation and 5-minute deflation on 1 upper arm with a blood pressure cuff) 24 hours before surgery or a sham condition (control group) that was induced by 4 cycles of 5-minute inflation to a pressure of 20 mm Hg followed by 5-minute cuff deflation. The primary end point was the incidence of AKI within the prior 7 days after cardiac surgery. The secondary end points included renal replacement therapy during hospitalization, change in urinary biomarkers of AKI and markers of myocardial injury, duration of intensive care unit stay and mechanical ventilation, and occurrence of nonfatal myocardial infarction, stroke, and all-cause mortality by day 90. RESULTS: A total of 509 patients (mean age, 65.2±8.2 years; 348 men [68.4%]) were randomly assigned to the RIPC group (n=254) or control group (n=255). AKI was significantly reduced in the RIPC group compared with the control group (69/254 [27.2%] versus 90/255 [35.3%]; odds ratio, 0.68 [95% CI, 0.47-1.00]; P=0.048). There were no significant between-group differences in the secondary end points of perioperative myocardial injury (assessed by the concentrations of cardiac troponin T, creatine kinase myocardial isoenzyme, and NT-proBNP [N-terminal pro-brain natriuretic peptide]), duration of stay in the intensive care unit and hospital, and occurrence of nonfatal myocardial infarction, stroke, and all-cause mortality by day 90. CONCLUSIONS: Among high-risk patients undergoing cardiac surgery, delayed RIPC significantly reduced the occurrence of AKI. REGISTRATION: URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2000035568.

12.
Clin Kidney J ; 17(8): sfae221, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39145145

RESUMEN

Background: Acute kidney injury (AKI) is a serious complication in patients undergoing cardiac surgery, with the underlying mechanism remaining elusive and a lack of specific biomarkers for cardiac surgery-associated AKI (CS-AKI). Methods: We performed an untargeted metabolomics analysis of urine samples procured from a cohort of patients with or without AKI at 6 and 24 h following cardiac surgery. Based on the differential urinary metabolites discovered, we further examined the expressions of the key metabolic enzymes that regulate these metabolites in kidney during AKI using a mouse model of ischemia-reperfusion injury (IRI) and in hypoxia-treated tubular epithelial cells (TECs). Results: The urine metabolomic profiles in AKI patients were significantly different from those in non-AKI patients, including upregulation of tryptophan metabolism- and aerobic glycolysis-related metabolites, such as l-tryptophan and d-glucose-1-phosphate, and downregulation of fatty acid oxidation (FAO) and tricarboxylic acid (TCA) cycle-related metabolites. Spearman correlation analysis showed that serum creatinine was positively correlated with urinary l-tryptophan and indole, which had high accuracy for predicting AKI. In animal experiments, we demonstrated that the expression of rate-limiting enzymes in glycolysis, such as hexokinase II (HK2), was significantly upregulated during renal IRI. However, the TCA cycle-related key enzyme citrate synthase was significantly downregulated after IRI. In vitro, hypoxia induced downregulation of citrate synthase in TECs. In addition, FAO-related gene peroxisome proliferator-activated receptor alpha (PPARα) was remarkably downregulated in kidney during renal IRI. Conclusion: This study presents urinary metabolites related to CS-AKI, indicating the rewiring of the metabolism in kidney during AKI, identifying potential AKI biomarkers.

13.
Ann Med ; 56(1): 2393273, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39189520

RESUMEN

BACKGROUND: Polypoidal choroidal vasculopathy (PCV) is a hemorrhagic fundus disease that can lead to permanent vision loss. Predicting the treatment response to anti-VEGF monotherapy in PCV is consistently challenging. We aimed to conduct a prospective multicenter study to explore and identify the imaging biomarkers for predicting the anti-VEGF treatment response in PCV patients, establish predictive model, and undergo multicenter validation. METHODS: This prospective multicenter study utilized clinical characteristics and images of treatment naïve PCV patients from 15 ophthalmic centers nationwide to screen biomarkers, develop model, and validate its performance. Patients from Peking Union Medical College Hospital were randomly divided into a training set and an internal validation set. A nomogram was established by univariate, LASSO regression, and multivariate regression analysis. Patients from the other 14 centers served as an external test set. Area under the curve (AUC), sensitivity, specificity, and accuracy were calculated. Decision curve analysis (DCA) and clinical impact curve (CIC) were utilized to evaluate the practical utility in clinical decision-making. FINDINGS: The eye distribution for the training set, internal validation set, and external test set were 66, 31, and 71, respectively. The 'Good responder' exhibited a thinner subfoveal choroidal thickness (SFCT) (230.67 ± 61.96 vs. 314.42 ± 88.00 µm, p < 0.001), lower choroidal vascularity index (CVI) (0.31 ± 0.08 vs. 0.36 ± 0.05, p = 0.006), fewer choroidal vascular hyperpermeability (CVH) (31.0 vs. 62.2%, p = 0.012), and more intraretinal fluid (IRF) (58.6 vs. 29.7%, p = 0.018). SFCT (OR 0.990; 95% CI 0.981-0.999; p = 0.033) and CVI (OR 0.844; 95% CI 0.732-0.971; p = 0.018) were ultimately included as the optimal predictive biomarkers and presented in the form of a nomogram. The model demonstrated AUC of 0.837 (95% CI 0.738-0.936), 0.891 (95% CI 0.765-1.000), and 0.901 (95% CI 0.824-0.978) for predicting 'Good responder' in the training set, internal validation set, and external test set, respectively, with excellent sensitivity, specificity, and practical utility. INTERPRETATION: Thinner SFCT and lower CVI can serve as imaging biomarkers for predicting good treatment response to anti-VEGF monotherapy in PCV patients. The nomogram based on these biomarkers exhibited satisfactory performances.


Asunto(s)
Inhibidores de la Angiogénesis , Biomarcadores , Tomografía de Coherencia Óptica , Factor A de Crecimiento Endotelial Vascular , Humanos , Masculino , Femenino , Estudios Prospectivos , Anciano , Persona de Mediana Edad , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Coroides/irrigación sanguínea , Coroides/diagnóstico por imagen , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/diagnóstico por imagen , Resultado del Tratamiento , Nomogramas , Pólipos/tratamiento farmacológico , Pólipos/diagnóstico por imagen , Pólipos/diagnóstico , Angiografía con Fluoresceína/métodos , Enfermedades de la Coroides/tratamiento farmacológico , Enfermedades de la Coroides/diagnóstico por imagen , Enfermedades de la Coroides/diagnóstico , Vasculopatía Coroidea Polipoidea
14.
J Fungi (Basel) ; 10(8)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194852

RESUMEN

Botryosphaeria dothidea, a notorious plant pathogen, is responsible for causing chestnut rot during postharvest storage. This research aimed to assess the antifungal properties of perilla essential oil (PEO) and perillaldehyde (PAE) against B. dothidea. PEO's and PAE's inhibitory effects on B. dothidea were investigated using an agar dilution method, a fumigation method, and an in vivo assay in chestnuts and shell buckets. Based on the results of gas chromatography-mass spectrometry, it was confirmed that the main component of PEO was elemicin. The antifungal mechanism of PEO and PAE against B. dothidea was investigated by conducting staining experiments of the fungal cell wall and cell membrane. PEO and PAE strongly inhibit the mycelial growth of B. dothidea in a dose-dependent manner. The inhibitory mechanism is mainly related to the destruction of the integrity of the fungal cell wall and plasma membrane. Notably, PEO retains its antifungal efficacy against B. dothidea in chestnuts, effectively prolonging their storage life. These findings indicate that PEO and PAE are nontoxic, eco-friendly botanical fungicides, holding promise for controlling postharvest chestnut rot.

15.
Adv Sci (Weinh) ; 11(36): e2403019, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39054639

RESUMEN

The main challenge for immune checkpoint blockade (ICB) therapy lies in immunosuppressive tumor microenvironment (TME). Repolarizing M2-like tumor-associated macrophages (TAMs) into inflammatory M1 phenotype is a promising strategy for cancer immunotherapy. Here, this study shows that the tumor suppressive protein SHISA3 regulates the antitumor functions of TAMs. Local delivery of mRNA encoding Shisa3 enables cancer immunotherapy by reprogramming TAMs toward an antitumoral phenotype, thus enhancing the efficacy of programmed cell death 1 (PD-1) antibody. Enforced expression of Shisa3 in TAMs increases their phagocytosis and antigen presentation abilities and promotes CD8+ T cell-mediated antitumor immunity. The expression of SHISA3 is induced by damage/pathogen-associated molecular patterns (DAMPs/PAMPs) in macrophages via nuclear factor-κB (NF-κB) transcription factors. Reciprocally, SHISA3 forms a complex with heat shock protein family A member 8 (HSPA8) to activate NF-κB signaling thus maintaining M1 polarization of macrophages. Knockout Shisa3 largely abolishes the antitumor efficacy of combination immunotherapy with Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) and PD-1 antibody. It further found that higher expression of SHISA3 in antitumoral TAMs is associated with better overall survival in lung cancer patients. Taken together, the findings describe the role of SHISA3 in reprogramming TAMs that ameliorate cancer immunotherapy.


Asunto(s)
Inmunoterapia , Fenotipo , Microambiente Tumoral , Macrófagos Asociados a Tumores , Animales , Ratones , Inmunoterapia/métodos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/genética , Línea Celular Tumoral
16.
Small ; : e2401369, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016116

RESUMEN

Multidrug combination therapy in the inner ear faces diverse challenges due to the distinct physicochemical properties of drugs and the difficulties of overcoming the oto-biologic barrier. Although nanomedicine platforms offer potential solutions to multidrug delivery, the access of drugs to the inner ear remains limited. Micro/nanomachines, capable of delivering cargo actively, are promising tools for overcoming bio-barriers. Herein, a novel microrobot-based strategy to penetrate the round window membrane (RWM) is presented and multidrug in on-demand manner is delivered. The tube-type microrobot (TTMR) is constructed using the template-assisted layer-by-layer (LbL) assembly of chitosan/ferroferric oxide/silicon dioxide (CS/Fe3O4/SiO2) and loaded with anti-ototoxic drugs (curcumin, CUR and tanshinone IIA, TSA) and perfluorohexane (PFH). Fe3O4 provides magnetic actuation, while PFH ensures acoustic propulsion. Upon ultrasound stimulation, the vaporization of PFH enables a microshotgun-like behavior, propelling the drugs through barriers and driving them into the inner ear. Notably, the proportion of drugs entering the inner ear can be precisely controlled by varying the feeding ratios. Furthermore, in vivo studies demonstrate that the drug-loaded microrobot exhibits superior protective effects and excellent biosafety toward cisplatin (CDDP)-induced hearing loss. Overall, the microrobot-based strategy provides a promising direction for on-demand multidrug delivery for ear diseases.

17.
Pharmacol Res ; 207: 107314, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059614

RESUMEN

The efficacy of PD-1 therapy in non-small cell lung cancer (NSCLC) patients remains unsatisfactory. Activating the STING pathway is a promising strategy to improve PD-1 inhibitor efficacy. Here, we found tetrandrine (TET), an anti-tumor compound extracted from a medicinal plant commonly used in traditional Chinese medicine, has the ability to inhibit NSCLC tumor growth. Mechanistically, TET induces nuclear DNA damage and increases cytosolic dsDNA, thereby activating the STING/TBK1/IRF3 pathway, which in turn promotes the tumor infiltration of dendritic cells (DCs), macrophages, as well as CD8+ T cells in mice. In vivo imaging dynamically monitored the increased activity of the STING pathway after TET treatment and predicted the activation of the tumor immune microenvironment. We further revealed that the combination of TET with αPD-1 monoclonal antibody (αPD-1 mAb) yields significant anti-cancer effects by promoting CD8+ T cell infiltration and enhancing its cell-killing effect, which in turn reduced the growth of tumors and prolonged survival of NSCLC mice. Therefore, TET effectively eliminates NSCLC cells and enhances immunotherapy efficacy through the activation of the STING pathway, and combining TET with anti-PD-1 immunotherapy deserves further exploration for applications.


Asunto(s)
Bencilisoquinolinas , Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Factor 3 Regulador del Interferón , Neoplasias Pulmonares , Proteínas de la Membrana , Receptor de Muerte Celular Programada 1 , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Humanos , Proteínas de la Membrana/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Inmunoterapia/métodos , Femenino , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos BALB C , Sinergismo Farmacológico
18.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000360

RESUMEN

Mitochondrial dysfunction has been increasingly recognized as a trigger for systemic lupus erythematosus (SLE). Recent bioinformatics studies have suggested Fam210b as a significant candidate for the classification and therapeutic targeting of SLE. To experimentally prove the role of Fam210b in SLE, we constructed Fam210b knockout (Fam210b-/-) mice using the CRISPR-Cas9 method. We found that approximately 15.68% of Fam210b-/- mice spontaneously developed lupus-like autoimmunity, which was characterized by skin ulcerations, splenomegaly, and an increase in anti-double-stranded DNA (anti-dsDNA) IgG antibodies and anti-nuclear antibodies(ANA). Single-cell sequencing showed that Fam210b was mainly expressed in erythroid cells. Critically, the knockout of Fam210b resulted in abnormal erythrocyte differentiation and development in the spleens of mice. Concurrently, the spleens exhibited an increased number of CD71+ erythroid cells, along with elevated levels of reactive oxygen species (ROS) in the erythrocytes. The co-culture of CD71+ erythroid cells and lymphocytes resulted in lymphocyte activation and promoted dsDNA and IgG production. In summary, Fam210b knockout leads to a low probability of lupus-like symptoms in mice through the overproduction of ROS in CD71+ erythroid cells. Thus, Fam210b reduction may serve as a novel key marker that triggers the development of SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Ratones Noqueados , Animales , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Anticuerpos Antinucleares , Membranas Mitocondriales/metabolismo , Células Eritroides/metabolismo , Células Eritroides/patología , Modelos Animales de Enfermedad , Inmunoglobulina G/metabolismo , Ratones Endogámicos C57BL , Bazo/metabolismo , Bazo/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Femenino
19.
J Med Chem ; 67(15): 12695-12710, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39080985

RESUMEN

α-synuclein (α-syn) pathologies are central to the development of synucleinopathies including Parkinson's disease (PD). Positron emission tomography (PET) imaging of α-syn pathologies is one strategy to facilitate the diagnosis, understanding, and treatment of synucleinopathies, but has been restricted by the lack of specific α-syn PET probes. In this work, we identified 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole (ITA) as a new α-syn-binding scaffold. Through autoradiography studies, we discovered an iodinated lead compound [125I]ITA-3, with moderate binding affinity (IC50 = 55 nM) to α-syn pathologies in human PD brain sections. Modified from [125I]ITA-3, we developed a potential PET tracer, [18F]FITA-2 (radiochemical yield >25%, molar activity >110 GBq/µmol), which demonstrated clear signals in α-syn-rich regions in human PD brain tissues (IC50 = 245 nM), good brain uptake (SUVpeak = 2.80 ± 0.45), and fast clearance rate in rats. Overall, [18F]FITA-2 appears to be a promising candidate for α-syn PET imaging and merits further development.


Asunto(s)
Tomografía de Emisión de Positrones , Tiadiazoles , alfa-Sinucleína , Tomografía de Emisión de Positrones/métodos , alfa-Sinucleína/metabolismo , Humanos , Animales , Tiadiazoles/química , Tiadiazoles/síntesis química , Tiadiazoles/farmacología , Tiadiazoles/farmacocinética , Ratas , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Radiofármacos/química , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Radiofármacos/farmacología , Radioisótopos de Flúor/química , Imidazoles/química , Imidazoles/farmacocinética , Imidazoles/síntesis química , Masculino , Ratas Sprague-Dawley , Descubrimiento de Drogas , Relación Estructura-Actividad
20.
Theranostics ; 14(9): 3423-3438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948056

RESUMEN

PRL1 and PRL3, members of the protein tyrosine phosphatase family, have been associated with cancer metastasis and poor prognosis. Despite extensive research on their protein phosphatase activity, their potential role as lipid phosphatases remains elusive. Methods: We conducted comprehensive investigations to elucidate the lipid phosphatase activity of PRL1 and PRL3 using a combination of cellular assays, biochemical analyses, and protein interactome profiling. Functional studies were performed to delineate the impact of PRL1/3 on macropinocytosis and its implications in cancer biology. Results: Our study has identified PRL1 and PRL3 as lipid phosphatases that interact with phosphoinositide (PIP) lipids, converting PI(3,4)P2 and PI(3,5)P2 into PI(3)P on the cellular membranes. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis, facilitating nutrient extraction, cell migration, and invasion, thereby contributing to tumor development. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis. Additionally, we found a correlation between PRL1/3 expression and glioma development, suggesting their involvement in glioma progression. Conclusions: Combining with the knowledge that PRLs have been identified to be involved in mTOR, EGFR and autophagy, here we concluded the physiological role of PRL1/3 in orchestrating the nutrient sensing, absorbing and recycling via regulating macropinocytosis through its lipid phosphatase activity. This mechanism could be exploited by tumor cells facing a nutrient-depleted microenvironment, highlighting the potential therapeutic significance of targeting PRL1/3-mediated macropinocytosis in cancer treatment.


Asunto(s)
Pinocitosis , Proteínas Tirosina Fosfatasas , Proteínas Tirosina Fosfatasas/metabolismo , Humanos , Línea Celular Tumoral , Animales , Proteínas de Neoplasias/metabolismo , Movimiento Celular , Ratones , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de la Membrana , Proteínas de Ciclo Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...