RESUMEN
Chemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe2 and MoS2 under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites. Trifluoromethylation induces p-type doping in the underlying 2D material, enabling the modulation of charge transport and optical emission properties in WSe2. This work introduces a versatile and efficient method for tailoring the optical and electronic properties of 2D transition metal dichalcogenides.
RESUMEN
Inconsistent interface control in devices based on two-dimensional materials (2DMs) has limited technological maturation. Astounding variability of 2D/three-dimensional (2D/3D) interface properties has been reported, which has been exacerbated by the lack of direct investigations of buried interfaces commonly found in devices. Herein, we demonstrate a new process that enables the assembly and isolation of device-relevant heterostructures for buried interface characterization. This is achieved by implementing a water-soluble substrate (GeO2), which enables deposition of many materials onto the 2DM and subsequent heterostructure release by dissolving the GeO2 substrate. Here, we utilize this novel approach to compare how the chemistry, doping, and strain in monolayer MoS2 heterostructures fabricated by direct deposition vary from those fabricated by transfer techniques to show how interface properties differ with the heterostructure fabrication method. Direct deposition of thick Ni and Ti films is found to react with the monolayer MoS2. These interface reactions convert 50% of MoS2 into intermetallic species, which greatly exceeds the 10% conversion reported previously and 0% observed in transfer-fabricated heterostructures. We also measure notable differences in MoS2 carrier concentration depending on the heterostructure fabrication method. Direct deposition of thick Au, Ni, and Al2O3 films onto MoS2 increases the hole concentration by >1012 cm-2 compared to heterostructures fabricated by transferring MoS2 onto these materials. Thus, we demonstrate a universal method to fabricate 2D/3D heterostructures and expose buried interfaces for direct characterization.
RESUMEN
Sample tracking and identity are essential when processing multiple samples in parallel. Sequencing applications often involve high sample numbers, and the data are frequently used in a clinical setting. As such, a simple and accurate intrinsic sample tracking process through a sequencing pipeline is essential. Various solutions have been implemented to verify sample identity, including variant detection at the start and end of the pipeline using arrays or genotyping, bioinformatic comparisons, and optical barcoding of samples. None of these approaches are optimal. To establish a more effective approach using genetic barcoding, we developed a panel of unique DNA sequences cloned into a common vector. A unique DNA sequence is added to the sample when it is first received and can be detected by PCR and/or sequencing at any stage of the process. The control sequences are approximately 200 bases long with low identity to any sequence in the National Center for Biotechnology Information nonredundant database (<30 bases) and contain no long homopolymer (>7) stretches. When a spiked next-generation sequencing library is sequenced, sequence reads derived from this control sequence are generated along with the standard sequencing run and are used to confirm sample identity and determine cross-contamination levels. This approach is used in our targeted clinical diagnostic whole-genome and RNA-sequencing pipelines and is an inexpensive, flexible, and platform-agnostic solution.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Biología Computacional , Contaminación de ADN , Bases de Datos de Ácidos Nucleicos , Biblioteca de Genes , Humanos , Estándares de Referencia , Reproducibilidad de los Resultados , Análisis de Secuencia de ADNRESUMEN
High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion.
Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Ováricas/patología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Antígenos CD8/metabolismo , Análisis por Conglomerados , Femenino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Pérdida de Heterocigocidad , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/clasificación , Neoplasias Ováricas/inmunología , Polimorfismo de Nucleótido Simple , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Secuenciación Completa del Genoma , Adulto JovenRESUMEN
The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.
Asunto(s)
Neoplasias Cerebelosas/terapia , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Meduloblastoma/terapia , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Selección Genética/efectos de los fármacos , Animales , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/radioterapia , Neoplasias Cerebelosas/cirugía , Células Clonales/patología , Irradiación Craneoespinal , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Genoma Humano/genética , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/radioterapia , Meduloblastoma/cirugía , Ratones , Terapia Molecular Dirigida/métodos , Recurrencia Local de Neoplasia/terapia , Radioterapia Guiada por Imagen , Transducción de Señal , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
CONTEXT AND OBJECTIVE: Oncocytic thyroid carcinoma, also known as Hürthle cell thyroid carcinoma, accounts for only a small percentage of all thyroid cancers. However, this malignancy often presents at an advanced stage and poses unique challenges to patients and clinicians. Surgical resection of the tumor accompanied in some cases by radioactive iodine treatment, radiation, and chemotherapy are the established modes of therapy. Knowledge of the perturbed oncogenic pathways can provide better understanding of the mechanism of disease and thus opportunities for more effective clinical management. DESIGN AND PATIENTS: Initially, two oncocytic thyroid carcinomas and their matched normal tissues were profiled using whole genome sequencing. Subsequently, 72 oncocytic thyroid carcinomas, one cell line, and five Hürthle cell adenomas were examined by targeted sequencing for the presence of mutations in the multiple endocrine neoplasia I (MEN1) gene. RESULTS: Here we report the identification of MEN1 loss-of-function mutations in 4% of patients diagnosed with oncocytic thyroid carcinoma. Whole genome sequence data also revealed large regions of copy number variation encompassing nearly the entire genomes of these tumors. CONCLUSION: Menin, a ubiquitously expressed nuclear protein, is a well-characterized tumor suppressor whose loss is the cause of MEN1 syndrome. Menin is involved in several major cellular pathways such as regulation of transcription, control of cell cycle, apoptosis, and DNA damage repair pathways. Mutations of this gene in a subset of Hürthle cell tumors point to a potential role for this protein and its associated pathways in thyroid tumorigenesis.
Asunto(s)
Mutación , Proteínas Proto-Oncogénicas/genética , Neoplasias de la Tiroides/genética , Adenoma Oxifílico , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Dosificación de Gen , Humanos , Metástasis Linfática , Análisis por Apareamiento , Glándula Tiroides/patología , Neoplasias de la Tiroides/patologíaRESUMEN
Cellular barcoding offers a powerful approach to characterize the growth and differentiation activity of large numbers of cotransplanted stem cells. Here, we describe a lentiviral genomic-barcoding and analysis strategy and its use to compare the clonal outputs of transplants of purified mouse and human basal mammary epithelial cells. We found that both sources of transplanted cells produced many bilineage mammary epithelial clones in primary recipients, although primary clones containing only one detectable mammary lineage were also common. Interestingly, regardless of the species of origin, many clones evident in secondary recipients were not detected in the primary hosts, and others that were changed from appearing luminal-restricted to appearing bilineage. This barcoding methodology has thus revealed conservation between mice and humans of a previously unknown diversity in the growth and differentiation activities of their basal mammary epithelial cells stimulated to grow in transplanted hosts.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Glándulas Mamarias Animales/citología , Glándulas Mamarias Humanas/citología , Trasplante de Células Madre , Células Madre/citología , Animales , Linaje de la Célula , Proliferación Celular , Tamaño de la Célula , Células Clonales , Células Epiteliales/citología , Células Epiteliales/trasplante , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , RegeneraciónRESUMEN
Individuals who inherit mutations in BRCA1 or BRCA2 are predisposed to breast and ovarian cancers. However, identifying mutations in these large genes by conventional dideoxy sequencing in a clinical testing laboratory is both time consuming and costly, and similar challenges exist for other large genes, or sets of genes, with relevance in the clinical setting. Second-generation sequencing technologies have the potential to improve the efficiency and throughput of clinical diagnostic sequencing, once clinically validated methods become available. We have developed a method for detection of variants based on automated small-amplicon PCR followed by sample pooling and sequencing with a second-generation instrument. To demonstrate the suitability of this method for clinical diagnostic sequencing, we analyzed the coding exons and the intron-exon boundaries of BRCA1 and BRCA2 in 91 hereditary breast cancer patient samples. Our method generated high-quality sequence coverage across all targeted regions, with median coverage greater than 4000-fold for each sample in pools of 24. Sensitive and specific automated variant detection, without false-positive or false-negative results, was accomplished with a standard software pipeline using bwa for sequence alignment and samtools for variant detection. We experimentally derived a minimum threshold of 100-fold sequence depth for confident variant detection. The results demonstrate that this method is suitable for sensitive, automatable, high-throughput sequence variant detection in the clinical laboratory.
Asunto(s)
Análisis Mutacional de ADN/métodos , Genes BRCA1 , Genes BRCA2 , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Secuencia de Bases , Frecuencia de los Genes , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estudios Prospectivos , Sensibilidad y EspecificidadRESUMEN
High-grade serous ovarian cancer (HGSC) is characterized by poor outcome, often attributed to the emergence of treatment-resistant subclones. We sought to measure the degree of genomic diversity within primary, untreated HGSCs to examine the natural state of tumour evolution prior to therapy. We performed exome sequencing, copy number analysis, targeted amplicon deep sequencing and gene expression profiling on 31 spatially and temporally separated HGSC tumour specimens (six patients), including ovarian masses, distant metastases and fallopian tube lesions. We found widespread intratumoural variation in mutation, copy number and gene expression profiles, with key driver alterations in genes present in only a subset of samples (eg PIK3CA, CTNNB1, NF1). On average, only 51.5% of mutations were present in every sample of a given case (range 10.2-91.4%), with TP53 as the only somatic mutation consistently present in all samples. Complex segmental aneuploidies, such as whole-genome doubling, were present in a subset of samples from the same individual, with divergent copy number changes segregating independently of point mutation acquisition. Reconstruction of evolutionary histories showed one patient with mixed HGSC and endometrioid histology, with common aetiologic origin in the fallopian tube and subsequent selection of different driver mutations in the histologically distinct samples. In this patient, we observed mixed cell populations in the early fallopian tube lesion, indicating that diversity arises at early stages of tumourigenesis. Our results revealed that HGSCs exhibit highly individual evolutionary trajectories and diverse genomic tapestries prior to therapy, exposing an essential biological characteristic to inform future design of personalized therapeutic solutions and investigation of drug-resistance mechanisms.
Asunto(s)
Cistadenocarcinoma Seroso/genética , Análisis Mutacional de ADN/métodos , Regulación Neoplásica de la Expresión Génica , Variación Genética/genética , Neoplasias Ováricas/genética , Anciano , Células Clonales , Cistadenocarcinoma Seroso/secundario , Progresión de la Enfermedad , Resistencia a Medicamentos , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Ováricas/patología , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Parathyroid carcinoma is a rare endocrine malignancy with an estimated incidence of less than 1 per million population. Excessive secretion of parathyroid hormone, extremely high serum calcium level, and the deleterious effects of hypercalcaemia are the clinical manifestations of the disease. Up to 60% of patients develop multiple disease recurrences and although long-term survival is possible with palliative surgery, permanent remission is rarely achieved. Molecular drivers of sporadic parathyroid carcinoma have remained largely unknown. Previous studies, mostly based on familial cases of the disease, suggested potential roles for the tumour suppressor MEN1 and proto-oncogene RET in benign parathyroid tumourigenesis, while the tumour suppressor HRPT2 and proto-oncogene CCND1 may also act as drivers in parathyroid cancer. Here, we report the complete genomic analysis of a sporadic and recurring parathyroid carcinoma. Mutational landscapes of the primary and recurrent tumour specimens were analysed using high-throughput sequencing technologies. Such molecular profiling allowed for identification of somatic mutations never previously identified in this malignancy. These included single nucleotide point mutations in well-characterized cancer genes such as mTOR, MLL2, CDKN2C, and PIK3CA. Comparison of acquired mutations in patient-matched primary and recurrent tumours revealed loss of PIK3CA activating mutation during the evolution of the tumour from the primary to the recurrence. Structural variations leading to gene fusions and regions of copy loss and gain were identified at a single-base resolution. Loss of the short arm of chromosome 1, along with somatic missense and truncating mutations in CDKN2C and THRAP3, respectively, provides new evidence for the potential role of these genes as tumour suppressors in parathyroid cancer. The key somatic mutations identified in this study can serve as novel diagnostic markers as well as therapeutic targets.
Asunto(s)
Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Genómica , Recurrencia Local de Neoplasia/genética , Neoplasias de las Paratiroides/genética , Adulto , Secuencia de Bases , Calcio/sangre , Transformación Celular Neoplásica , Fosfatidilinositol 3-Quinasa Clase I , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , ADN de Neoplasias/química , ADN de Neoplasias/genética , Proteínas de Unión al ADN/genética , Dosificación de Gen , Fusión Génica , Humanos , Masculino , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/genética , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Hormona Paratiroidea/metabolismo , Neoplasias de las Paratiroides/patología , Neoplasias de las Paratiroides/cirugía , Fosfatidilinositol 3-Quinasas/genética , Polimorfismo de Nucleótido Simple , Proto-Oncogenes Mas , ARN Neoplásico/genética , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/genéticaRESUMEN
High-grade serous carcinoma (HGSC) is the most common and fatal form of ovarian cancer. While most tumours are highly sensitive to cytoreductive surgery and platinum- and taxane-based chemotherapy, the majority of patients experience recurrence of treatment-resistant tumours. The clonal origin and mutational adaptations associated with recurrent disease are poorly understood. We performed whole exome sequencing on tumour cells harvested from ascites at three time points (primary, first recurrence, and second recurrence) for three HGSC patients receiving standard treatment. Somatic point mutations and small insertions and deletions were identified by comparison to constitutional DNA. The clonal structure and evolution of tumours were inferred from patterns of mutant allele frequencies. TP53 mutations were predominant in all patients at all time points, consistent with the known founder role of this gene. Tumours from all three patients also harboured mutations associated with cell cycle checkpoint function and Golgi vesicle trafficking. There was convergence of germline and somatic variants within the DNA repair, ECM, cell cycle control, and Golgi vesicle pathways. The vast majority of somatic variants found in recurrent tumours were present in primary tumours. Our findings highlight both known and novel pathways that are commonly mutated in HGSC. Moreover, they provide the first evidence at single nucleotide resolution that recurrent HGSC arises from multiple clones present in the primary tumour with negligible accumulation of new mutations during standard treatment.
Asunto(s)
Evolución Clonal/genética , Cistadenocarcinoma Seroso/genética , Recurrencia Local de Neoplasia/genética , Neoplasias Ováricas/genética , Proteína p53 Supresora de Tumor/genética , Alelos , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , ADN de Neoplasias/genética , Resistencia a Antineoplásicos , Exoma , Matriz Extracelular/genética , Femenino , Redes Reguladoras de Genes , Genómica , Aparato de Golgi/genética , Humanos , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Análisis de Secuencia de ADNRESUMEN
Next generation sequencing has now enabled a cost-effective enumeration of the full mutational complement of a tumor genome-in particular single nucleotide variants (SNVs). Most current computational and statistical models for analyzing next generation sequencing data, however, do not account for cancer-specific biological properties, including somatic segmental copy number alterations (CNAs)-which require special treatment of the data. Here we present CoNAn-SNV (Copy Number Annotated SNV): a novel algorithm for the inference of single nucleotide variants (SNVs) that overlap copy number alterations. The method is based on modelling the notion that genomic regions of segmental duplication and amplification induce an extended genotype space where a subset of genotypes will exhibit heavily skewed allelic distributions in SNVs (and therefore render them undetectable by methods that assume diploidy). We introduce the concept of modelling allelic counts from sequencing data using a panel of Binomial mixture models where the number of mixtures for a given locus in the genome is informed by a discrete copy number state given as input. We applied CoNAn-SNV to a previously published whole genome shotgun data set obtained from a lobular breast cancer and show that it is able to discover 21 experimentally revalidated somatic non-synonymous mutations in a lobular breast cancer genome that were not detected using copy number insensitive SNV detection algorithms. Importantly, ROC analysis shows that the increased sensitivity of CoNAn-SNV does not result in disproportionate loss of specificity. This was also supported by analysis of a recently published lymphoma genome with a relatively quiescent karyotype, where CoNAn-SNV showed similar results to other callers except in regions of copy number gain where increased sensitivity was conferred. Our results indicate that in genomically unstable tumors, copy number annotation for SNV detection will be critical to fully characterize the mutational landscape of cancer genomes.
Asunto(s)
Genes Relacionados con las Neoplasias , Genoma , Mutación , Neoplasias/genética , Algoritmos , Variaciones en el Número de Copia de ADN , Humanos , Modelos GenéticosRESUMEN
The classification of endometrial carcinomas is based on pathological assessment of tumour cell type; the different cell types (endometrioid, serous, carcinosarcoma, mixed, undifferentiated, and clear cell) are associated with distinct molecular alterations. This current classification system for high-grade subtypes, in particular the distinction between high-grade endometrioid (EEC-3) and serous carcinomas (ESC), is limited in its reproducibility and prognostic abilities. Therefore, a search for specific molecular classifiers to improve endometrial carcinoma subclassification is warranted. We performed target enrichment sequencing on 393 endometrial carcinomas from two large cohorts, sequencing exons from the following nine genes: ARID1A, PPP2R1A, PTEN, PIK3CA, KRAS, CTNNB1, TP53, BRAF, and PPP2R5C. Based on this gene panel, each endometrial carcinoma subtype shows a distinct mutation profile. EEC-3s have significantly different frequencies of PTEN and TP53 mutations when compared to low-grade endometrioid carcinomas. ESCs and EEC-3s are distinct subtypes with significantly different frequencies of mutations in PTEN, ARID1A, PPP2R1A, TP53, and CTNNB1. From the mutation profiles, we were able to identify subtype outliers, ie cases diagnosed morphologically as one subtype but with a mutation profile suggestive of a different subtype. Careful review of these diagnostically challenging cases suggested that the original morphological classification was incorrect in most instances. The molecular profile of carcinosarcomas suggests two distinct mutation profiles for these tumours: endometrioid-type (PTEN, PIK3CA, ARID1A, KRAS mutations) and serous-type (TP53 and PPP2R1A mutations). While this nine-gene panel does not allow for a purely molecularly based classification of endometrial carcinoma, it may prove useful as an adjunct to morphological classification and serve as an aid in the classification of problematic cases. If used in practice, it may lead to improved diagnostic reproducibility and may also serve to stratify patients for targeted therapeutics.
Asunto(s)
Carcinoma Endometrioide/clasificación , Carcinosarcoma/clasificación , Cistadenocarcinoma Seroso/clasificación , Neoplasias Endometriales/clasificación , Mutación , Carcinoma Endometrioide/diagnóstico , Carcinoma Endometrioide/genética , Carcinosarcoma/diagnóstico , Carcinosarcoma/genética , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Análisis Mutacional de ADN , ADN de Neoplasias/análisis , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/genética , Femenino , Genes Supresores de Tumor , Humanos , Inestabilidad de Microsatélites , Oncogenes , Transducción de SeñalRESUMEN
Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Evolución Molecular , Mutación/genética , Alelos , Neoplasias de la Mama/diagnóstico , Células Clonales/metabolismo , Células Clonales/patología , Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL/genética , Mutación Puntual/genética , Medicina de Precisión , Reproducibilidad de los Resultados , Análisis de Secuencia de ARNRESUMEN
The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia.
Asunto(s)
Regulación Leucémica de la Expresión Génica , Hematopoyesis/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Leucemia/genética , Acetilación , Animales , Sitios de Unión , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Células de la Médula Ósea/metabolismo , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Epigenómica , Femenino , Perfilación de la Expresión Génica , Leucemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
MOTIVATION: The study of cancer genomes now routinely involves using next-generation sequencing technology (NGS) to profile tumours for single nucleotide variant (SNV) somatic mutations. However, surprisingly few published bioinformatics methods exist for the specific purpose of identifying somatic mutations from NGS data and existing tools are often inaccurate, yielding intolerably high false prediction rates. As such, the computational problem of accurately inferring somatic mutations from paired tumour/normal NGS data remains an unsolved challenge. RESULTS: We present the comparison of four standard supervised machine learning algorithms for the purpose of somatic SNV prediction in tumour/normal NGS experiments. To evaluate these approaches (random forest, Bayesian additive regression tree, support vector machine and logistic regression), we constructed 106 features representing 3369 candidate somatic SNVs from 48 breast cancer genomes, originally predicted with naive methods and subsequently revalidated to establish ground truth labels. We trained the classifiers on this data (consisting of 1015 true somatic mutations and 2354 non-somatic mutation positions) and conducted a rigorous evaluation of these methods using a cross-validation framework and hold-out test NGS data from both exome capture and whole genome shotgun platforms. All learning algorithms employing predictive discriminative approaches with feature selection improved the predictive accuracy over standard approaches by statistically significant margins. In addition, using unsupervised clustering of the ground truth 'false positive' predictions, we noted several distinct classes and present evidence suggesting non-overlapping sources of technical artefacts illuminating important directions for future study. AVAILABILITY: Software called MutationSeq and datasets are available from http://compbio.bccrc.ca.
Asunto(s)
Algoritmos , Inteligencia Artificial , Neoplasias de la Mama/genética , Mutación , Polimorfismo de Nucleótido Simple , Teorema de Bayes , Análisis por Conglomerados , Exoma , Femenino , Genoma , Humanos , Modelos Genéticos , Neoplasias , Programas Informáticos , Máquina de Vectores de SoporteRESUMEN
Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.
Asunto(s)
Histonas/metabolismo , Linfoma no Hodgkin/genética , Mutación/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma Humano/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Pérdida de Heterocigocidad/genética , Linfoma Folicular/enzimología , Linfoma Folicular/genética , Linfoma de Células B Grandes Difuso/enzimología , Linfoma de Células B Grandes Difuso/genética , Linfoma no Hodgkin/enzimología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción MEF2 , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismoRESUMEN
OBJECTIVE: The molecular mechanisms that maintain human pluripotent stem (PS) cells are not completely understood. Here we sought to identify new candidate PS cell regulators to facilitate future improvements in their generation, expansion, and differentiation. MATERIALS AND METHODS: We used bioinformatic analyses of multiple serial-analysis-of-gene-expression libraries (generated from human PS cells and their differentiated derivatives), together with small interfering RNA (siRNA) screening to identify candidate pluripotency regulators. Validation of candidate regulators involved promoter analyses, Affymetrix profiling, real-time PCR, and immunoprecipitation. RESULTS: Promoter analysis of genes differentially expressed across multiple serial-analysis-of-gene-expression libraries identified E2F motifs in the promoters of many PS cell-specific genes (e.g., POU5F1, NANOG, SOX2, FOXD3). siRNA analyses identified two retinoblastoma binding proteins (RBBP4, RBBP9) as required for maintenance of multiple human PS cell types. Both RBBPs were bound to RB in human PS cells, and E2F motifs were present in the promoters of genes whose expression was altered by decreasing RBBP4 and RBBP9 expression. Affymetrix and real-time PCR studies of siRNA-treated human PS cells showed that reduced RBBP4 or RBBP9 expression concomitantly decreased expression of POU5F1, NANOG, SOX2, and/or FOXD3 plus certain cell cycle genes (e.g., CCNA2, CCNB1), while increasing expression of genes involved in organogenesis (particularly neurogenesis). CONCLUSIONS: These results reveal new candidate positive regulators of human PS cells, providing evidence of their ability to regulate expression of pluripotency, cell cycle, and differentiation genes in human PS cells. These data provide valuable new leads for further elucidating mechanisms of human pluripotency.
Asunto(s)
Proteínas de Ciclo Celular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Neoplasias/genética , Células Madre Pluripotentes/metabolismo , Proteína 4 de Unión a Retinoblastoma/genética , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Células Cultivadas , Perfilación de la Expresión Génica , Biblioteca de Genes , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Interferencia de ARN , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Proteína 4 de Unión a Retinoblastoma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Massively parallel sequencing is a useful approach for characterizing T-cell receptor diversity. However, immune receptors are extraordinarily difficult sequencing targets because any given receptor variant may be present in very low abundance and may differ legitimately by only a single nucleotide. We show that the sensitivity of sequence-based repertoire profiling is limited by both sequencing depth and sequencing accuracy. At two timepoints, 1 wk apart, we isolated bulk PBMC plus naïve (CD45RA+/CD45RO-) and memory (CD45RA-/CD45RO+) T-cell subsets from a healthy donor. From T-cell receptor beta chain (TCRB) mRNA we constructed and sequenced multiple libraries to obtain a total of 1.7 billion paired sequence reads. The sequencing error rate was determined empirically and used to inform a high stringency data filtering procedure. The error filtered data yielded 1,061,522 distinct TCRB nucleotide sequences from this subject which establishes a new, directly measured, lower limit on individual T-cell repertoire size and provides a useful reference set of sequences for repertoire analysis. TCRB nucleotide sequences obtained from two additional donors were compared to those from the first donor and revealed limited sharing (up to 1.1%) of nucleotide sequences among donors, but substantially higher sharing (up to 14.2%) of inferred amino acid sequences. For each donor, shared amino acid sequences were encoded by a much larger diversity of nucleotide sequences than were unshared amino acid sequences. We also observed a highly statistically significant association between numbers of shared sequences and shared HLA class I alleles.
Asunto(s)
Antígenos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucocitos Mononucleares/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Subgrupos de Linfocitos T/metabolismo , Adulto , Antígenos/genética , Antígenos/inmunología , Femenino , Variación Genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Memoria Inmunológica , Leucocitos Mononucleares/inmunología , Masculino , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
BACKGROUND: Ovarian clear-cell and endometrioid carcinomas may arise from endometriosis, but the molecular events involved in this transformation have not been described. METHODS: We sequenced the whole transcriptomes of 18 ovarian clear-cell carcinomas and 1 ovarian clear-cell carcinoma cell line and found somatic mutations in ARID1A (the AT-rich interactive domain 1A [SWI-like] gene) in 6 of the samples. ARID1A encodes BAF250a, a key component of the SWISNF chromatin remodeling complex. We sequenced ARID1A in an additional 210 ovarian carcinomas and a second ovarian clear-cell carcinoma cell line and measured BAF250a expression by means of immunohistochemical analysis in an additional 455 ovarian carcinomas. RESULTS: ARID1A mutations were seen in 55 of 119 ovarian clear-cell carcinomas (46%), 10 of 33 endometrioid carcinomas (30%), and none of the 76 high-grade serous ovarian carcinomas. Seventeen carcinomas had two somatic mutations each. Loss of the BAF250a protein correlated strongly with the ovarian clear-cell carcinoma and endometrioid carcinoma subtypes and the presence of ARID1A mutations. In two patients, ARID1A mutations and loss of BAF250a expression were evident in the tumor and contiguous atypical endometriosis but not in distant endometriotic lesions. CONCLUSIONS: These data implicate ARID1A as a tumor-suppressor gene frequently disrupted in ovarian clear-cell and endometrioid carcinomas. Since ARID1A mutation and loss of BAF250a can be seen in the preneoplastic lesions, we speculate that this is an early event in the transformation of endometriosis into cancer. (Funded by the British Columbia Cancer Foundation and the Vancouver General HospitalUniversity of British Columbia Hospital Foundation.).