Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38961643

RESUMEN

Mixed-oxygen ionic and electronic conduction is crucial for the cathode materials of solid oxide fuel cells, ensuring high efficiency and low-temperature operation. However, the electronic and oxygen ionic conductivity of traditional Fe-based layered perovskite cathode materials is low, resulting in insufficient oxygen reduction reactivity. Herein, a type of high-entropy perovskite oxide consisting of five equimolar metals, Pr0.4La0.4Ba0.4Sr0.4Ca0.4Fe2O5+δ (PLBSCF), a high-performance cobalt-free cathode derived from the PrBaFe2O5+δ (PBF), is proposed. Such A-site engineering could not only increase the oxygen vacancy concentration of PLBSCF but also give higher conductivity than PBF, thus significantly reducing the polarization impedance of the symmetric cell to only 0.052 Ω·cm2 at 750 °C. The good output performance of a single cell is also realized. The peak power density of the single cell with PLBSCF-Ce0.9Gd0.1O2-δ (GDC) as the cathode at 750 °C was 0.853 W·cm-2. Additionally, the single cell with the PLBSCF cathode exhibits a good durable performance of 100 h at 750 °C. Combining the distribution of relaxation time analysis, it can be seen that the enhancement of the oxygen reduction reaction is due to the reduction of intermediate-frequency and low-frequency resistance, indicating an improvement in the charge transfer process and adsorption/dissociation process of molecular oxygen.

2.
Int J Biol Macromol ; : 133655, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969029

RESUMEN

Integrated wound care, a sequential process of promoting wound hemostasis, sealing, and healing, is of great clinical significance. However, the wet environment of wounds poses formidable challenges for integrated care. Herein, we developed an epidermal growth factor (EGF)-loaded, dehydrated physical microgel (DPM)-formed adhesive hydrogel for the integrated care of wet wounds. The DPMs were designed using the rational combination of hygroscopicity and reversible crosslinking of physical hydrogels. Unlike regular bioadhesives, which consider interfacial water as a barrier to adhesion, DPMs utilize water to form desirable adhesive structures. The hygroscopicity allowed the DPMs to absorb interfacial water and subsequently, the interfacial adhesion was realized by the interactions between tissue and DPMs. The reversible crosslinks further enabled DPMs to integrate into hydrogels (DPM-Gels), thus achieving wet adhesion. Importantly, the water-absorbing gelation mode of DPMs enabled facile loading of biologically active EGF to promote wound healing. We demonstrated that the DPM-Gels possessed wet tissue adhesive performance, with about 40 times the wet adhesive strength of fibrin glue and about 4 times the burst pressure of human blood pressure. Upon application at the injury site, the EGF-loaded DPM-Gels sequentially promoted efficient wound hemostasis, stable sealing, and quick healing, achieving integrated care of wet wounds.

3.
J Colloid Interface Sci ; 675: 357-368, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972123

RESUMEN

Multimetal phosphides derived from metal-organic frameworks (MOFs) have garnered significant interest owing to their distinct electronic configurations and abundant active sites. However, developing robust and efficient catalysts based on metal phosphides for overall water splitting (OWS) remains challenging. Herein, we present an approach for synthesizing a self-supporting hollow porous cubic FeNiP-CoP@NC catalyst on a nickel foam (NF) substrate. Through ion exchange, the reconstruction chemistry transforms the FeNi-MOF nanospheres into intricate hollow porous FeNi-MOF-Co nanocubes. After phosphorization, numerous N, P co-doped carbon-coated FeNiP-CoP nanoparticles were tightly embedded within a two-dimensional (2D) carbon matrix. The NF/FeNiP-CoP@NC heterostructure retained a porous configuration, numerous heterogeneous interfaces, distinct defects, and a rich composition of active sites. Moreover, incorporating Co and the resulting structural evolution facilitated the electron transfer in FeNiP-CoP@NC, enhancing the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes. Consequently, the NF/FeNiP-CoP@NC catalyst demonstrated very low overpotentials of 78 mV for OER and 254 mV for HER in an alkaline medium. It also exhibited excellent long-term stability at various potentials (@10 mA cm-2, @20 mA cm-2, and @50 mA cm-2). As an overall water splitting cell, it required only 1.478 V to drive a current density of 50 mA cm-2 and demonstrated long-term stability. Density functional theory (DFT) calculations revealed a synergistic effect between multimetal phosphides, enhancing the intrinsic OER and HER activities of FeNiP-CoP@NC. This work not only elucidates the role of heteroatom induction in structural reconstruction but also highlights the importance of electronic structure modulation.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38865231

RESUMEN

Motion mode (M-mode) echocardiography is essential for measuring cardiac dimension and ejection fraction. However, the current diagnosis is time-consuming and suffers from diagnosis accuracy variance. This work resorts to building an automatic scheme through well-designed and well-trained deep learning to conquer the situation. That is, we proposed RAMEM, an automatic scheme of real-time M-mode echocardiography, which contributes three aspects to address the challenges: 1) provide MEIS, the first dataset of M-mode echocardiograms, to enable consistent results and support developing an automatic scheme; For detecting objects accurately in echocardiograms, it requires big receptive field for covering long-range diastole to systole cycle. However, the limited receptive field in the typical backbone of convolutional neural networks (CNN) and the losing information risk in non-local block (NL) equipped CNN risk the accuracy requirement. Therefore, we 2) propose panel attention embedding with updated UPANets V2, a convolutional backbone network, in a real-time instance segmentation (RIS) scheme for boosting big object detection performance; 3) introduce AMEM, an efficient algorithm of automatic M-mode echocardiography measurement, for automatic diagnosis; The experimental results show that RAMEM surpasses existing RIS schemes (CNNs with NL & Transformers as the backbone) in PASCAL 2012 SBD and human performances in MEIS. The implemented code and dataset are available at https://github.com/hanktseng131415go/RAMEM.

5.
Nanomicro Lett ; 16(1): 213, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861114

RESUMEN

The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor-semiconductor-metal heterostructure system, Mo-MXene/Mo-metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott-Schottky junctions. By skillfully combining these distinct functional components (Mo-MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces. The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide, which achieved remarkable reflection loss values of - 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.

6.
Acta Biomater ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936752

RESUMEN

Integrated wound care through sequentially promoting hemostasis, sealing, and healing holds great promise in clinical practice. However, it remains challenging for regular bioadhesives to achieve integrated care of dynamic wounds due to the difficulties in adapting to dynamic mechanical and wet wound environments. Herein, we reported a type of dehydrated, physical double crosslinked microgels (DPDMs) which were capable of in situ forming highly stretchable, compressible and tissue-adhesive hydrogels for integrated care of dynamic wounds. The DPDMs were designed by the rational integration of the reversible crosslinks and double crosslinks into micronized gels. The reversible physical crosslinks enabled the DPDMs to integrate together, and the double crosslinked characteristics further strengthen the formed macroscopical networks (DPDM-Gels). We demonstrated that the DPDM-Gels simultaneously possess outstanding tensile (∼940 kJ/m3) and compressive (∼270 kJ/m3) toughness, commercial bioadhesives-comparable tissue-adhesive strength, together with stable performance under hundreds of deformations. In vivo results further revealed that the DPDM-Gels could effectively stop bleeding in various bleeding models, even in an actual dynamic environment, and enable the integrated care of dynamic skin wounds. On the basis of the remarkable mechanical and appropriate adhesive properties, together with impressive integrated care capacities, the DPDM-Gels may provide a new approach for the smart care of dynamic wounds. STATEMENT OF SIGNIFICANCE: Integrated care of dynamic wounds holds great significance in clinical practice. However, the dynamic and wet wound environments pose great challenges for existing hydrogels to achieve it. This work developed robust adhesive hydrogels for integrated care of dynamic wounds by designing dehydrated, physical double crosslinked microgels (DPDMs). The reversible and double crosslinks enabled DPDMs to integrate into macroscopic hydrogels with high mechanical properties, appropriate adhesive strength and stable performance under hundreds of external deformations. Upon application at the injury site, DPDM-Gels efficiently stopped bleeding, even in an actual dynamic environment and showed effectiveness in integrated care of dynamic wounds. With the fascinating properties, DPDMs may become an effective tool for smart wound care.

7.
Surg Endosc ; 38(7): 4048-4056, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806956

RESUMEN

BACKGROUND: Laparoscopic left hemihepatectomy (LLH) has been shown to be an effective and safe method for treating hepatolithiasis primarily affecting the left hemiliver. However, this procedure still presents challenges. Due to pathological changes in intrahepatic duct stones, safely dissecting the hilar vessels and determining precise resection boundaries remains difficult, even with fluorescent imaging. Our team proposed a new method of augmented reality navigation (ARN) combined with Indocyanine green (ICG) fluorescence imaging for LLH in hepatolithiasis cases. This study aimed to investigate the feasibility of this combined approach in the procedure. METHODS: Between May 2021 and September 2023, 16 patients with hepatolithiasis who underwent LLH were included. All patients underwent preoperative 3D evaluation and were then guided using ARN and ICG fluorescence imaging during the procedure. Perioperative and short-term postoperative outcomes were assessed to evaluate the safety and efficacy of the method. RESULTS: All 16 patients successfully underwent LLH. The mean operation time was 380.31 ± 92.17 min, with a mean estimated blood loss of 116.25 ± 64.49 ml. ARN successfully aided in guiding hilar vessel dissection in all patients. ICG fluorescence imaging successfully identified liver resection boundaries in 11 patients (68.8%). In the remaining 5 patients (31.3%) where fluorescence imaging failed, virtual liver segment projection (VLSP) successfully identified their resection boundaries. No major complications occurred in any patients. Immediate stone residual rate, stone recurrence rate, and stone extraction rate through the T-tube sinus tract were 12.5%, 6.3%, and 6.3%, respectively. CONCLUSION: The combination of ARN and ICG fluorescence imaging enhances the safety and precision of LLH for hepatolithiasis. Moreover, ARN may serve as a safe and effective tool for identifying precise resection boundaries in cases where ICG fluorescence imaging fails.


Asunto(s)
Realidad Aumentada , Hepatectomía , Verde de Indocianina , Laparoscopía , Hepatopatías , Imagen Óptica , Humanos , Hepatectomía/métodos , Laparoscopía/métodos , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Hepatopatías/cirugía , Hepatopatías/diagnóstico por imagen , Imagen Óptica/métodos , Anciano , Cirugía Asistida por Computador/métodos , Estudios de Factibilidad , Tempo Operativo , Colorantes , Resultado del Tratamiento
8.
Surg Endosc ; 38(7): 4057-4066, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806957

RESUMEN

BACKGROUND: Precision surgery for liver tumors favors laparoscopic anatomical liver resection (LALR), involving the removal of specific liver segments or subsegments. Indocyanine green (ICG)-negative staining is a commonly used method for defining resection boundaries but may be prone to failure. The challenge arises when ICG staining fails, as it cannot be repeated during surgery. In this study, we employed the virtual liver segment projection (VLSP) technology as a salvage approach for precise boundary determination. Our aim was to assess the feasibility of the VLSP to be used for the determination of the boundaries of the liver resection in this situation. METHODS: Between January 2021 and June 2023, 12 consecutive patients undergoing subsegment-oriented LALR were included in this pilot series. The VLSP technology was utilized to define the resection boundaries at the time of ICG-negative staining failure. Routine surgical parameters and short-term outcomes were evaluated to assess the safety of VLSP in this procedure. In addition, its feasibility was assessed by analyzing the accuracy between the predicted resected liver volume (PRLV) and actual resected liver volume (ARLV). RESULTS: Of the 12 enrolled patients, the mean operation time was 444.58 ± 101.70 min (range 290-570 min), with a mean blood loss of 125.00 ± 96.53 ml (range 50-400 mL). One patient (8.3%) was converted to laparotomy for subsequent parenchymal transection, four (33.3%) received blood transfusions and four (33.3%) had postoperative complications. All patients received an R0 resection. The Pearson correlation coefficient (r) between PRLV and ARLV was 0.98 (R2 = 0.96, p < 0.05), and the relative error (RE) was 8.62 ± 6.66% in the 12 patients, indicating agreement. CONCLUSION: Failure of intraoperative ICG-negative staining during subsegment-oriented LALR is possible, and VLSP may be an alternative to define the resection boundaries in such cases.


Asunto(s)
Colorantes , Estudios de Factibilidad , Hepatectomía , Verde de Indocianina , Laparoscopía , Neoplasias Hepáticas , Humanos , Proyectos Piloto , Femenino , Masculino , Hepatectomía/métodos , Persona de Mediana Edad , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/patología , Laparoscopía/métodos , Anciano , Tempo Operativo , Coloración y Etiquetado/métodos , Cirugía Asistida por Computador/métodos , Hígado/cirugía
9.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791286

RESUMEN

In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications.


Asunto(s)
Materiales Biocompatibles , Adhesivos Tisulares , Adhesivos Tisulares/química , Humanos , Animales , Materiales Biocompatibles/química , Polímeros/química , Plásticos Biodegradables/química , Quitosano/química
10.
ACS Sens ; 9(4): 2122-2133, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38602840

RESUMEN

Terahertz (THz) spectroscopy has impressive capability for label-free biosensing, but its utility in clinical laboratories is rarely reported due to often unsatisfactory detection performances. Here, we fabricated metal-graphene hybrid THz metasurfaces (MSs) for the sensitive and enzyme-free detection of circulating tumor DNA (ctDNA) in pancreatic cancer plasma samples. The feasibility and mechanism of the enhanced effects of a graphene bridge across the MS and amplified by gold nanoparticles (AuNPs) were investigated experimentally and theoretically. The AuNPs serve to boost charge injection in the graphene film and result in producing a remarkable change in the graded transmissivity index to THz radiation of the MS resonators. Assay design utilizes this feature and a cascade hybridization chain reaction initiated on magnetic beads in the presence of target ctDNA to achieve dual signal amplification (chemical and optical). In addition to demonstrating subfemtomolar detection sensitivity and single-nucleotide mismatch selectivity, the proposed method showed remarkable capability to discriminate between pancreatic cancer patients and healthy individuals by recognizing and quantifying targeted ctDNAs. The introduction of graphene to the metasurface produces an improved sensitivity of 2 orders of magnitude for ctDNA detection. This is the first study to report the combined application of graphene and AuNPs in biosensing by THz spectroscopic resonators and provides a combined identification scheme to detect and discriminate different biological analytes, including nucleic acids, proteins, and various biomarkers.


Asunto(s)
ADN Tumoral Circulante , Oro , Grafito , Nanopartículas del Metal , Neoplasias Pancreáticas , Grafito/química , Humanos , Oro/química , Nanopartículas del Metal/química , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/análisis , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/diagnóstico , Técnicas Biosensibles/métodos , Espectroscopía de Terahertz/métodos , Hibridación de Ácido Nucleico , Límite de Detección
11.
Org Lett ; 26(16): 3435-3440, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38629704

RESUMEN

We have developed a widely applicable (radio)fluoro-iodination of alkenes using readily available and easily handled KF (18F). The reactions exhibited high functional group tolerance and needed only an ambient atmosphere. Furthermore, the resulting product could be further functionalized with various nucleophiles.

12.
Ren Fail ; 46(1): 2338929, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38632963

RESUMEN

OBJECTIVE: To delineate the efficacy and safety profile of hemodiafiltration with endogenous reinfusion (HFR) for uremic toxin removal in patients undergoing maintenance hemodialysis (MHD). METHODS: Patients who have been on MHD for a period of at least 3 months were enrolled. Each subject underwent one HFR and one hemodiafiltration (HDF) treatment. Blood samples were collected before and after a single HFR or HDF treatment to test uremic toxin levels and to calculate clearance rate. The primary efficacy endpoint was to compare uremic toxin levels of indoxyl sulfate (IS), λ-free light chains (λFLC), and ß2-microglobulin (ß2-MG) before and after HFR treatment. Secondary efficacy endpoints was to compare the levels of urea, interleukin-6 (IL-6), P-cresol, chitinase-3-like protein 1 (YKL-40), leptin (LEP), hippuric acid (HPA), trimethylamine N-oxide (TMAO), asymmetric dimethylarginine (ADMA), tumor necrosis factor-α (TNF-α), fibroblast growth factor 23 (FGF23) before and after HFR treatment. The study also undertook a comparative analysis of uremic toxin clearance between a single HFR and HDF treatment. Meanwhile, the lever of serum albumin and branched-chain amino acids before and after a single HFR or HDF treatment were compared. In terms of safety, the study was meticulous in recording vital signs and the incidence of adverse events throughout its duration. RESULTS: The study enrolled 20 patients. After a single HFR treatment, levels of IS, λFLC, ß2-MG, IL-6, P-cresol, YKL-40, LEP, HPA, TMAO, ADMA, TNF-α, and FGF23 significantly decreased (p < 0.001 for all). The clearance rates of λFLC, ß2-MG, IL-6, LEP, and TNF-α were significantly higher in HFR compared to HDF (p values: 0.036, 0.042, 0.041, 0.019, and 0.036, respectively). Compared with pre-HFR and post-HFR treatment, levels of serum albumin, valine, and isoleucine showed no significant difference (p > 0.05), while post-HDF, levels of serum albumin significantly decreased (p = 0.000). CONCLUSION: HFR treatment effectively eliminates uremic toxins from the bloodstream of patients undergoing MHD, especially protein-bound toxins and large middle-molecule toxins. Additionally, it retains essential physiological compounds like albumin and branched-chain amino acids, underscoring its commendable safety profile.


Asunto(s)
Cresoles , Hemodiafiltración , Metilaminas , Humanos , Hemodiafiltración/efectos adversos , Proyectos Piloto , Tóxinas Urémicas , Proteína 1 Similar a Quitinasa-3 , Interleucina-6 , Factor de Necrosis Tumoral alfa , Diálisis Renal , Aminoácidos de Cadena Ramificada , Albúmina Sérica
13.
World J Surg ; 48(5): 1242-1251, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38530128

RESUMEN

BACKGROUND: Hepatolithiasis is a complex condition that poses challenges and difficulties in surgical treatment. Three-dimensional visualization technology combined with fluorescence imaging (3DVT-FI) enables accurate preoperative assessment and real-time intraoperative navigation. However, the perioperative outcomes of 3DVT-FI in hepatolithiasis have not been reported. We aim to evaluate the efficacy of 3DVT-FI in the treatment of hepatolithiasis. METHODS: A retrospective analysis was performed on 128 patients who underwent hepatectomy for hepatolithiasis at the Department of Hepatobiliary Surgery, Zhujiang Hospital, between January 2017 and December 2022. Among them, 50 patients underwent hepatectomy using 3DVT-FI (3DVT-FI group), while 78 patients underwent conventional hepatectomy without 3DVT-FI (CH group). The operative data, postoperative liver function indices, complication rates and stone residue were compared between the two groups. RESULTS: There were no significant differences in preoperative baseline data between the two groups (p > 0.05). Compared with the CH group, the 3DVT-FI group exhibited lower intraoperative blood loss (140.00 ± 112.12 vs. 225.99 ± 186.50 mL, p = 0.001), and a lower intraoperative transfusion rate (8.0% vs. 23.1%, p = 0.027). The overall incidence of postoperative complications did not differ significantly (22.0% vs. 35.9%, p = 0.096). The 3DVT-FI group was associated with a lower immediate residual stone rate (16.0% vs. 34.6%, p = 0.021). There were no perioperative deaths in the 3DVT-FI group, while one perioperative death occurred in the CH group. CONCLUSIONS: The 3DVT-FI may offer significant benefits in terms of surgical safety, reduced intraoperative bleeding and decreased stone residue during hepatectomy for hepatolithiasis.


Asunto(s)
Hepatectomía , Imagenología Tridimensional , Verde de Indocianina , Hepatopatías , Imagen Óptica , Humanos , Hepatectomía/métodos , Estudios Retrospectivos , Femenino , Masculino , Persona de Mediana Edad , Imagen Óptica/métodos , Hepatopatías/cirugía , Hepatopatías/diagnóstico por imagen , Adulto , Resultado del Tratamiento , Anciano , Cirugía Asistida por Computador/métodos
15.
Int J Surg ; 110(3): 1663-1676, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241321

RESUMEN

BACKGROUND: Three-dimensional reconstruction visualization technology (3D-RVT) is an important tool in the preoperative assessment of patients undergoing liver resection. However, it is not clear whether this technique can improve short-term and long-term outcomes in patients with hepatocellular carcinoma (HCC) compared with two-dimensional (2D) imaging. METHOD: A total of 3402 patients from five centers were consecutively enrolled from January 2016 to December 2020, and grouped based on the use of 3D-RVT or 2D imaging for preoperative assessment. Baseline characteristics were balanced using propensity score matching (PSM, 1:1) and stabilized inverse probability of treatment-weighting (IPTW) to reduce potential selection bias. The perioperative outcomes, long-term overall survival (OS), and recurrence-free survival (RFS) were compared between the two groups. Cox-regression analysis was used to identify the risk factors associated with RFS. RESULTS: A total of 1681 patients underwent 3D-RVT assessment before hepatectomy (3D group), while 1721 patients used 2D assessment (2D group). The PSM cohort included 892 patient pairs. In the IPTW cohort, there were 1608.3 patients in the 3D group and 1777.9 patients in the 2D group. In both cohorts, the 3D group had shorter operation times, lower morbidity and liver failure rates, as well as shorter postoperative hospital stays. The 3D group had more margins ≥10 mm and better RFS than the 2D group. The presence of tumors with a diameter ≥5 cm, intraoperative blood transfusion and multiple tumors were identified as independent risk factors for RFS, while 3D assessment and anatomical resection were independent protective factors. CONCLUSION: In this multicenter study, perioperative outcomes and RFS of HCC patients following 3D-RVT assessment were significantly different from those following 2D imaging assessment. Thus, 3D-RVT may be a feasible alternative assessment method before hepatectomy for these patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Puntaje de Propensión , Hepatectomía/métodos , Imagenología Tridimensional , Estudios Retrospectivos
16.
J Am Coll Surg ; 238(3): 321-330, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991244

RESUMEN

BACKGROUND: The internal anatomy of the liver is extremely complex. Laparoscopic anatomical segmentectomy requires reference to the position and alignment of intrahepatic vascular. However, the surface of the liver lacks anatomical landmarks and the liver segment boundaries cannot be identified with the naked eye. Augmented reality navigation (ARN) and indocyanine green fluorescence imaging (FI) are emerging navigation tools in liver resection. This study aimed to explore the efficacy and application value of laparoscopic anatomical segmentectomy guided by ARN combined with indocyanine green FI. STUDY DESIGN: Ninety-eight patients who were diagnosed with hepatocellular carcinoma and underwent laparoscopic anatomical segmentectomy from January 2018 to January 2022 were retrospectively analyzed. They were divided into the ARN-FI group (45 patients) and the non-ARN-FI group (53 patients) based on whether ARN combined with FI was applied during the operation. The differences in intraoperative and postoperative outcomes were compared. RESULTS: There was no significant difference in preoperative baseline data and postoperative complication rates between the 2 groups. Compared with the non-ARN-FI group, the ARN-FI group had much lower intraoperative blood loss (100 vs 200 mL, p = 0.005) and a lower incidence of remnant liver ischemia (13.3% vs 30.2%, p = 0.046). The 1- and 3-year disease-free survival rates in the ARN-FI and non-ARN-FI groups were 91.01% vs 71.15% and 70.01% vs 52.46%, respectively; the differences between the 2 groups were statistically significant (p = 0.047). CONCLUSIONS: The ARN-FI technology provides a more standardized approach for liver parenchyma section during laparoscopic liver resection, effectively minimizing intraoperative blood loss, reducing postoperative remnant liver ischemia, and improving oncological prognosis. This method is safe and feasible and has good clinical application prospects.


Asunto(s)
Realidad Aumentada , Carcinoma Hepatocelular , Laparoscopía , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Carcinoma Hepatocelular/complicaciones , Verde de Indocianina , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Estudios Retrospectivos , Pérdida de Sangre Quirúrgica , Hepatectomía/métodos , Laparoscopía/métodos , Imagen Óptica/métodos , Isquemia/complicaciones , Isquemia/cirugía
17.
Nanomicro Lett ; 16(1): 42, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38047957

RESUMEN

Metal-organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal-organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of - 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.

18.
Org Lett ; 25(45): 8127-8132, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37922337

RESUMEN

We report herein a highly efficient copper-catalyzed protocol for the transformation of haloalkynes to the corresponding difluoromethylated alkynes. This scalable protocol exhibits a broad substrate scope and excellent functional group tolerance, enabling the late-stage difluoromethylation of bioactive molecules. Additionally, the strategy of utilizing the difluoromethylalkynes in gram-scale reactions and multiple transformations has proven to be highly valuable in synthetic chemistry.

19.
ACS Catal ; 13(4): 2761-2770, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37800120

RESUMEN

Despite the success of Sonogashira coupling for the synthesis of arylalkynes and conjugated enynes, the engagement of unactivated alkyl halides in such reactions remains historically challenging. We report herein a strategy that merges Cu-catalyzed alkyne transfer with the aryl radical activation of carbon-halide bonds to enable a general approach for the coupling of alkyl iodides with terminal alkynes. This unprecedented Sonogashira-type cross-coupling reaction tolerates a broad range of functional groups and has been applied to the late-stage cross-coupling of densely functionalized pharmaceutical agents as well as the synthesis of positron emission tomography tracers.

20.
Sleep Med Rev ; 72: 101842, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37660580

RESUMEN

Insomnia is a common complaint for adults with multiple sclerosis and can severely impact health-related quality of life. Point prevalence estimates of insomnia are, however, difficult to determine in this population due to the use of different measurement tools as well as the highly variable clinical presentation of multiple sclerosis. This review consolidates the current evidence base to provide a global estimate of insomnia disorders and symptoms in multiple sclerosis, with consideration of both measurement and sample issues. A comprehensive review of the PUBMED, EMBASE, PsycINFO and CINAHL databases from database inception until January 31st, 2023 identified 1649 records, of which 34 (7636 participants total) were eligible for inclusion. Findings were meta-analysed using a random-effects model. Estimates based on self-reported symptoms (52%, CI: 44%-59%) were significantly higher than those obtained by diagnostic tools (22%, CI: 16%-29%). Gender was identified as a potential moderator, with women more likely to report insomnia than men. One in two adults with multiple sclerosis endorse symptoms of poor sleep quality and daytime sleepiness, with 1 in 5 diagnosed with an insomnia disorder. Future research is needed to enhance understanding of these comorbid conditions, including the trajectory of insomnia with disease progression. PROSPERO registration number CRD42021281524.


Asunto(s)
Trastornos de Somnolencia Excesiva , Esclerosis Múltiple , Trastornos del Inicio y del Mantenimiento del Sueño , Masculino , Adulto , Humanos , Femenino , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Trastornos del Inicio y del Mantenimiento del Sueño/etiología , Prevalencia , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/epidemiología , Calidad de Vida , Trastornos de Somnolencia Excesiva/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...