RESUMEN
Cadmium (Cd), as a heavy metal pollutant, can seriously affect plant growth and development. Boron (B), as an indispensable nutrient element, plays an important role in plant growth and cell wall (CW) synthesis. However, the physiological effects of B and Cd on plant growth and the mechanism of Cd chelation by the CW remain unclear. Here, we investigate the effect of exogenous B on Cd accumulation in CW components of Cosmos bipinnatus roots and its mechanism of Cd mitigation. Under B deficiency and single Cd (30 µM) treatments, the growth of C. bipinnatus was significantly inhibited, but the addition of exogenous B significantly increased plant biomass, which increased the Cd content in the underground parts of C. bipinnatus by 20.18% and reduced the Cd translocation factor by 22.22%. Meanwhile, application of exogenous B affected the subcellular Cd content across various Cd forms and alleviated Cd-induced oxidative stress in C. bipinnatus. Additionally, exogenous B and Cd and their mixtures affected the functional groups of the root CW, the proportion of polysaccharide components, the Cd content of polysaccharides, and the polysaccharide uronic acid content of C. bipinnatus. However, B application increased 3-deoxy-oct-2-ulosonic acid content, pectin esterase activity, low esterified pectin content, and its Cd content by 149.52%, 55.69%, 206.38%, and 150.02%, respectively, compared to Cd treatment alone. Thus, our study showed that B mitigates the toxicity of Cd to plants, revealing the effect of B on the physiological aspects of Cd tolerance in plants.
RESUMEN
Antimicrobial peptides (AMPs) possess strong antibacterial activity and low drug resistance, making them ideal candidates for bactericidal drugs for addressing the issue of traditional antibiotic resistance. In this study, a template (G(XXKK)nI, G = Gly; X = Leu, Ile, Phe, or Trp; n = 2, 3, or 4; K = Lys; I = Ile.) was employed for the devised of a variety of novel α-helical AMPs with a high therapeutic index. The AMP with the highest therapeutic index, WK2, was ultimately chosen following a thorough screening process. It demonstrates broad-spectrum and potent activity against both standard and multidrug-resistant bacteria, while also showing low hemolysis and rapid and efficient time-kill kinetics. Additionally, WK2 exhibits excellent efficacy in treating mouse models of Klebsiella pneumonia-induced lung infections and methicillin-resistant Staphylococcus aureus (MRSA)-induced skin wound infections while demonstrating good safety profiles in vivo. In conclusion, the template-based design methodology for novel AMPs with high therapeutic indices offers new insights into addressing antibiotic resistance problems. WK2 represents a promising antimicrobial agent.
Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Klebsiella pneumoniae , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Infección de Heridas , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/uso terapéutico , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Femenino , Modelos Animales de Enfermedad , Humanos , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Enfermedades Cutáneas Bacterianas/microbiologíaRESUMEN
Cadmium (Cd) is a biologically non-essential heavy metal, a major soil pollutant, and extremely harmful to plants. The phytohormone methyl jasmonate (MeJA) plays an important role in plant heavy-metal resistance. However, the understanding of the effects of MeJA supply level on alleviating Cd toxicity in plants is limited. Here, we investigated how MeJA regulated the development of physiological processes and cell wall modification in Cosmos bipinnatus. We found that low concentrations of MeJA increased the dry weight of seedlings under 120 µM Cd stress by reducing the transport of Cd from roots to shoots. Moreover, a threshold concentration of exogenous MeJA increased the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in plant roots, the concentration of Cd in the root cell wall, and the contents of pectin and hemicellulose 1 polysaccharides, through converting Cd into pectin-bound forms. These results suggested that MeJA mitigated Cd toxicity by modulating root cell wall polysaccharide and functional group composition, especially through pectin polysaccharides binding to Cd, with effects on Cd transport capacity, specific chemical forms of Cd, and homeostatic antioxidant systems in C. bipinnatus.
Asunto(s)
Acetatos , Cadmio , Ciclopentanos , Oxilipinas , Reguladores del Crecimiento de las Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/farmacología , Cadmio/toxicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
Plant growth is severely harmed by cadmium (Cd) contamination, while the addition of zinc (Zn) can reduce the toxic effects of Cd. However, the interaction between Cd and Zn on the molecular mechanism and cell wall of Cosmosbipinnatus is unclear. In this study, a transcriptome was constructed using RNA-sequencing. In C. bipinnatus root transcriptome data, the expression of 996, 2765, and 3023 unigenes were significantly affected by Cd, Zn, and Cd + Zn treatments, respectively, indicating different expression patterns of some metal transporters among the Cd, Zn, and Cd + Zn treatments. With the addition of Zn, the damage to the cell wall was reduced, both the proportion and content of polysaccharides in the cell wall were changed, and Cd accumulation was decreased by 32.34%. In addition, we found that Cd and Zn mainly accumulated in pectins, the content of which increased by 30.79% and 61.4% compared to the CK treatment. Thus, Zn could alleviate the toxicity of Cd to C. bipinnatus. This study revealed the interaction between Cd and Zn at the physiological and molecular levels, broadening our understanding of the mechanisms of tolerance to Cd and Zn stress in cosmos.
Asunto(s)
Cadmio , Pared Celular , Zinc , Cadmio/toxicidad , Zinc/metabolismo , Zinc/toxicidad , Zinc/farmacología , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/genéticaRESUMEN
Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160⯵M) and Zn (800⯵M) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160⯵M + 200⯵M) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160⯵M + 800⯵M) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.
Asunto(s)
Género Iris , Metales Pesados , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Zinc/toxicidad , Desarrollo de la Planta , Contaminantes del Suelo/toxicidadRESUMEN
Methyl jasmonate (MeJA), a crucial phytohormone, which plays an important role in resistance to Cadmium (Cd) stress. The cell wall (CW) of root system is the main location of Cd and plays a key role in resistance to Cd toxicity. However, the mechanism effect of MeJA on the CW composition and Cd accumulation remain unclear. In this study, the contribution of MeJA in regulating CW structure, pectin composition and Cd accumulation was investigated in Cosmos bipinnatus. Phenotypic results affirm MeJA's significant role in reducing Cd-induced toxicity in C. bipinnatus. Notably, MeJA exerts a dual impact, reducing Cd uptake in roots while increasing Cd accumulation in the CW, particularly bound to pectin. The molecular structure of pectin, mainly uronic acid (UA), correlates positively with Cd content, consistent in HC1 and cellulose, emphasizing UA as pivotal for Cd binding. Furthermore, MeJA modulates pectin methylesterase (PME) activity under Cd stress, influencing pectin's molecular structure and homogalacturonan (HG) content affecting Cd-binding capacity. Chelate-soluble pectin (CSP) within soluble pectins accumulates a substantial Cd proportion, with MeJA regulating both UA content and the minor component 3-deoxy-oct-2-ulosonic acid (Kdo) in CSP. The study delves into the intricate regulation of pectin monosaccharide composition under Cd stress, revealing insights into the CW's physical defense and Cd binding. In summary, this research provides novel insights into MeJA-specific mechanisms alleviating Cd toxicity in C. bipinnatus, shedding light on complex interactions between MeJA, and Cd accumulation in CW pectin polysaccharide.
Asunto(s)
Acetatos , Asteraceae , Cadmio , Ciclopentanos , Oxilipinas , Cadmio/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Polisacáridos/farmacología , Pectinas/química , Pared Celular/metabolismo , Asteraceae/metabolismoRESUMEN
Drought is among the most important abiotic stresses on plants, so research on the physiological regulation mechanisms of plants under drought stress can critically increase the economic and ecological value of plants in arid regions. In this study, the effects of drought stress on the growth status and biochemical indicators of Iris japonica were explored. Under drought stress, the root system, leaves, rhizomes, and terrestrial stems of plants were sequentially affected; the root system was sparse and slender; and the leaves lost their luster and gradually wilted. Among the physiological changes, the increase in the proline and soluble protein content of Iris japonica enhanced the cellular osmotic pressure and reduced the water loss. In anatomical structures, I. japonica chloroplasts were deformed after drought treatment, whereas the anatomical structures of roots did not substantially change. Plant antioxidant systems play an important role in maintaining cellular homeostasis; but, as drought stress intensified, the soluble sugar content of terrestrial stems was reduced by 55%, and the ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase (MDHAR) activities of leaves and the MDHAR activity of roots were reduced by 29%, 40%, 22%, and 77%, respectively. Overall, I. japonica was resistant to 63 days of severe drought stress and resisted drought through various physiological responses. These findings provide a basis for the application of I. japonica in water-scarce areas.
RESUMEN
Recent preclinical and clinical studies have demonstrated that for cancer treatment, combination therapies are more effective than monotherapies in reducing drug-related toxicity, decreasing drug resistance, and improving therapeutic efficacy. With the rapid development of nanotechnology, the combination of metal-organic frameworks (MOFs) and multi-mode therapy offers a realistic possibility to further improve the shortcomings of cancer treatment. This article focuses on the latest developments, achievements, and treatment strategies of representative multifunctional MOF combination therapies for cancer treatment in recent years, which include not only bimodal combination therapies, but also multi-modal synergistic therapies, further demonstrating the effectiveness and superiority of the MOF drug delivery systems in cancer treatment.
Asunto(s)
Sistemas de Liberación de Medicamentos , Estructuras Metalorgánicas , Estructuras Metalorgánicas/farmacología , Terapia Combinada , NanotecnologíaRESUMEN
As one of the major pollutants in the environment, chromium (Cr), a heavy metal, poses a serious threat to urban green spaces and human life and health. Cosmos bipinnatus is considered a potential accumulator of Cr, and the differences in cellular Cr distribution and compartmentalization may uncover the mechanisms involved in its tolerance to Cr. To elucidate the effects of Cr stress on C. bipinnatus and determine the mechanism of Cr tolerance in C. bipinnatus, we investigated the physiological indicators, subcellular distribution and chemical forms, cell wall fractions and their Cr contents, uronic acid content in the cell wall fractions, and Fourier transform infrared spectroscopy (FTIR) of the cell wall. The results showed that the antioxidant enzyme activities in C. bipinnatus under Cr stress and most of the Cr were fixed in the cell wall. Notably, changes in the content of pectin fractions in the cell wall affected the accumulation of Cr in the cell wall of C. bipinnatus and the stability of negatively charged groups. In addition, the carboxyl and hydroxyl groups played a role in fixing metal in various parts of the C. bipinnatus cell wall.
Asunto(s)
Asteraceae , Cromo , Humanos , Cromo/toxicidad , Antioxidantes , Pared CelularRESUMEN
The Chinese yam (Dioscorea polystachya Turcz.) is an underutilized orphan tuber crop. However, in China it has been used in traditional medicine and food for centuries due to the presence of high starch, protein, fiber, and biologically active compounds. Knowledge on the metabolomic profiles of Chinese yam varieties is needed to explore the underutilized metabolites and variety specific uses. Here, the metabolome of eight Chinese yam varieties that are cultivated in different Chinese regions was profiled. A total of 431 metabolites belonging to different biochemical classes was detected. The majority of detected metabolites were classified as amino acids and derivatives. The different yam varieties offer unique uses; e.g., Hebei Ma Yam, Henan Huai Yam, and Henan Wild Yam were the most metabolically enriched and suitable as food and medicine. Yams from Hubei region had comparable nutritional profiles, which is most probably due to their geographical origin. Specifically, Henan Wild Yam had the highest concentrations of diosgenin, vitamins, and polysaccharides. Overall, this study presents a metabolome reference for D. polystachya varieties.
RESUMEN
Light is essential to all life on the earth. Thus, highly efficient light-harvesting systems with the sequential energy transfer process are significant for using solar energy in photosynthesis. For developing an efficient light-harvesting system, a liquid aggregation-induced emission (AIE) dye TPE-EA is obtained, as a donor and solvent, which can light up the aggregation caused quenching (ACQ) Nile Red (NiR, acceptor) to construct a quantitative Förster resonance energy transfer (FRET) system in NiRâTPE-EA. Impressively, this FRET pair shows an impressive photothermal effect, producing a peak temperature of 119 °C while excited by UV light, with 37.8% of conversion efficiency. NiRâTPE-EA is quite different from most other photothermal materials, which require excitation with long wavelength light (>520 nm). Therefore, NiRâTPE-EA firstly converts the solar into thermal energy and then into electric energy to achieve sequential photo-thermo-electric conversion. Such sequential conversion, suitable for being excited by sunlight, is anticipated to unlock new and smart approaches for capturing solar energy.
Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Energía Solar , Electricidad , Fotosíntesis , Luz SolarRESUMEN
The centipede Scolopendra has important medicinal value and high toxicity, making it to be an interesting subject for evolutionary studies. However, species identification in China is difficult because of limited resource exploration and lack of recent taxonomic revision. To improve the identification and taxonomy of the genus Scolopendra in China, an in-depth investigation was conducted, and an integrated method that combined morphological characteristics with molecular data was applied. The identification key was revised to show the main difference among species. Our results indicated that morphologically-delimited species were consistent with the molecular analysis inferred from the COI sequences with genetic distances and phylogenetic trees. Additional morphometrics of four characteristics provided criteria for shape variation. These results suggested that the members of the genus Scolopendra in China could be delineated as 14 separate species. A new species from Lufeng county, Yunnan province, was proposed according to its characteristics, which was named as S. lufengia sp. nov. Our results comprehensively ascertained the taxonomic status of Scolopendra species in China, explored their phylogenetic relationships, showed a high success in the identification of medicinal centipedes.