RESUMEN
Metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of chronic liver disease worldwide. Optimal dietary intervention strategies for MAFLD are not standardized. This study aimed to achieve consensus on prevention of MAFLD through dietary modification. A multidisciplinary panel of 55 international experts, including specialists in hepatology, gastroenterology, dietetics, endocrinology and other medical specialties from six continents collaborated in a Delphi-based consensus development process. The consensus statements covered aspects ranging from epidemiology to mechanisms, management, and dietary recommendations for MAFLD. The recommended dietary strategies emphasize adherence to a balanced diet with controlled energy intake and personalized nutritional interventions, such as calorie restriction, high-protein, or low-carbohydrate diets. Specific dietary advice encouraged increasing the consumption of whole grains, plant-based proteins, fish, seafood, low-fat or fat-free dairy products, liquid plant oils, and deeply colored fruits and vegetables. Concurrently, it advised reducing the intake of red and processed meats, saturated and trans fats, ultra-processed foods, added sugars, and alcohol. Additionally, maintaining the Mediterranean or DASH diet, minimizing sedentary behavior, and engaging in regular physical activity are recommended. These consensus statements lay the foundation for customized dietary guidelines and proposing avenues for further research on nutrition and MAFLD.
RESUMEN
The oil sludge produced while extracting large oil and gas fields in the middle and high latitude regions has caused serious pollution to the surrounding soil. The key to solving this problem in the future is to unify the remediation of soil and the treatment of oil sludge. This study uses supercritical carbon dioxide(scCO2) technology to construct a low-carbon method, providing a new approach to achieve this goal. The study determines the optimal extraction conditions for black calcareous soil with 15% oil content to be 55 °C, 25 MPa, and 90 min through single factor and response surface experiments. Experiments on the scCO2 extraction coupled with freeze-thaw cycles show that oil sludge with a water content of 10% can improve the extraction efficiency of scCO2 by about 2.69% after less than five freeze-thaw cycles. The study also compares the extraction efficiency of the four soils, with a difference of 6.03% observed under the same conditions. Additionally, we analyze the impact of the extraction process on changes in the properties of the oil and soil in the oil sludge. Comprehensive tests, including scanning electron microscope (SEM), nutrient detection, X-ray powder diffractometer (XRD), fourier transform infrared spectroscopy (FTIR), and Gas Chromatography (GC), have been conducted. Results show that standalone scCO2 extraction can remove up to 98.2% of petroleum hydrocarbons from the oil sludge, while simultaneously causing small changes to the soil microstructure and the crystal structure of the oil sludge. Furthermore, this process does not lead to a significant depletion of key nutrients or the generation of new pollutants.
RESUMEN
BACKGROUND AND AIMS: The EAT-Lancet Commission devised a globally sustainable dietary pattern to jointly promote human health and sustainability. However, the extent to which this diet supports metabolic dysfunction-associated steatotic liver disease (MASLD) has not yet been assessed. This study aimed to investigate the association between the EAT-Lancet diet and the risk of MASLD and its severity. APPROACH AND RESULTS: This prospective multicohort study included 15,263 adults from the Tianjin Chronic Low-grade Systemic Inflammation and Health (TCLSIH) cohort, 1137 adults from the Guangzhou Nutrition and Health Study (GNHS) cohort, and 175,078 adults from the UK Biobank. In addition, 228 Chinese adults from the Prospective Epidemic Research Specifically of Non-alcoholic Steatohepatitis (PERSONS) with biopsy-proven MASLD were included. An EAT-Lancet diet index was created to reflect adherence to the EAT-Lancet reference diet. The TCLSIH cohort recorded 3010 MASLD cases during 53,575 person-years of follow-up, the GNHS cohort documented 624 MASLD cases during 6454 person-years of follow-up, and the UK Biobank developed 1350 MASLD cases during 1,745,432 person-years of follow-up. In multivariable models, participants in the highest tertiles of the EAT-Lancet diet index had a lower risk of MASLD compared with those in the lowest tertiles (TCLSIH: HR = 0.87, 95% CI: 0.78, 0.96; GNHS: HR = 0.79, 95% CI: 0.64, 0.98; UK Biobank: HR = 0.73, 95% CI: 0.63, 0.85). Moreover, liver-controlled attenuation parameter decreased with increasing the diet index in individuals with biopsy-proven MASLD (ß = -5.895; 95% CI: -10.014, -1.775). CONCLUSIONS: Adherence to the EAT-Lancet reference diet was inversely associated with the risk of MASLD as well as its severity.
RESUMEN
The literature on polyvinyl alcohol (PVA) films is extensive, however, these methods often necessitate intricate synthesis processes or the addition of plasticizers to modify the strength and water solubility of the PVA material. A high-strength UV radiation-resistant composite film by chelating Fe3+ with lignin and PVA, which exhibits excellent hydrolysis resistance is developed. This composite film is prepared simply by incorporating a small amount of dealkalized lignin (APPL) and ferric chloride (FeCl3) into PVA through a straightforward composite process. During the scanning test, it is noted that the film exhibits a high density of uniformly dispersed particles, endowing it with efficient ultraviolet absorption capabilities. The infrared and anti-dissolution tests reveal that the coordination of Fe3+ with lignin imparts an outstanding hydrolysis resistance to the film, obviating the need for any extender, curing agent, acid or base. The tensile fracture strength reaches an impressive 187.81Mpa in the tensile test. UV and indicator card tests unequivocally demonstrate that the film achieves a remarkable 100% anti-UV efficiency. This Fe3+ chelated lignin/PVA composite film, with its facile preparation, environmental sustainability, high strength, and outstanding anti-ultraviolet efficiency, can be deployed across diverse applications requiring robust protection against ultraviolet radiation.
RESUMEN
Introduction: Acute liver injury (ALI) is a common complication of sepsis and is associated with adverse clinical outcomes. We aimed to develop a model to predict the risk of ALI in patients with sepsis after hospitalization. Methods: Medical records of 3196 septic patients treated at the Lishui Central Hospital in Zhejiang Province from January 2015 to May 2023 were selected. Cohort 1 was divided into ALI and non-ALI groups for model training and internal validation. The initial laboratory test results of the study subjects were used as features for machine learning (ML), and models built using nine different ML algorithms were compared to select the best algorithm and model. The predictive performance of model stacking methods was then explored. The best model was externally validated in Cohort 2. Results: In Cohort 1, LightGBM demonstrated good stability and predictive performance with an area under the curve (AUC) of 0.841. The top five most important variables in the model were diabetes, congestive heart failure, prothrombin time, heart rate, and platelet count. The LightGBM model showed stable and good ALI risk prediction ability in the external validation of Cohort 2 with an AUC of 0.815. Furthermore, an online prediction website was developed to assist healthcare professionals in applying this model more effectively. Conclusions: The Light GBM model can predict the risk of ALI in patients with sepsis after hospitalization.
RESUMEN
Angelica dahurica is a kind of Chinese traditional herbs with economic and ornament value, widely distributed in China. Despite its significance, there have been limited comprehensive investigations on the genome of A. dahurica, particularly regarding mitochondrial genomes. To investigate the conversion between mitochondrial genome and chloroplast genome, a complete and circular mitochondrial genome was assembled using Oxford Nanopore Technologies (ONT) long reads. The mitochondrial genome of A. dahurica had a length of 228,315 base pairs (bp) with 45.06% GC content. The mitochondrial genome encodes 56 genes, including 34 protein-coding genes, 19 tRNA genes and 3 rRNA genes. Moreover, we discovered that 9 homologous large fragments between chloroplast genome and mitochondrial genome based on sequence similarity. This is the first report for A. dahurica mitochondrial genome, which could provide an insight for communication between plastid genome, and also give a reference genome for medicinal plants within the Angelica family.
RESUMEN
Electronic skins are expected to replicate a human-like tactile sense, which significantly detects surface information, including geometry, material, and temperature. Although most texture features can be sensed in the horizontal direction, the lack of effective approaches for detecting vertical properties limits the development of artificial skin based on tactile sensors. In this study, an all-printed finger-inspired tactile sensor array is developed to realize the 3D detection and reconstruction of microscale structures. A beam structure with a suspended multilayer membrane is proposed, and a tactile sensor array of 12 units arranged in a dual-column layout is developed. This architecture enables the tactile sensor array to obtain comprehensive geometric information of micro-textures, including 3D morphology and clearance characteristics, and optimizes the 3D reconstruction patterns by self-calibration. Moreover, an innovative screen-printing technology incorporating multilayer printing and sacrificial-layer techniques is adopted to print the entire device. In additon, a Braille recognition system utilizing this tactile sensor array is developed to interpret Shakespeare's quotes printed in Grade 2 Braille. The abovementioned demonstrations reveal an attractive future vision for endowing bioinspired robots with the unique capability of touching and feeling the microscale real world and reconstructing it in the cyber world.
RESUMEN
Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide and no pharmacological treatment is available that can achieve complete remission of HCC. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a recently identified HCC tumor suppressor gene which plays an important role in the development of HCC and its inactivation and reactivation has been shown to result in respectively HCC tumorigenesis and suppression. Small activating RNAs (saRNAs) have been used to achieve targeted activation of therapeutic genes for the restoration of their encoded protein through the RNAa mechanism. Here we designed and validated saRNAs that could activate LHPP expression at both the mRNA and protein levels in HCC cells. Activation of LHPP by its saRNAs led to the suppression of HCC proliferation, migration and the inhibition of Akt phosphorylation. When combined with targeted anticancer drugs (e.g., regorafenib), LHPP saRNA exhibited synergistic effect in inhibiting in vitro HCC proliferation and in vivo antitumor growth in a xenograft HCC model. Findings from this study provides further evidence for a tumor suppressor role of LHPP and potential therapeutic value of restoring the expression of LHPP by saRNA for the treatment of HCC.
Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Pirofosfatasa Inorgánica , Neoplasias Hepáticas , Humanos , Pirofosfatasa Inorgánica/metabolismo , Pirofosfatasa Inorgánica/genética , Proliferación Celular/efectos de los fármacos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ratones , Línea Celular Tumoral , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones DesnudosRESUMEN
Hydrothermal carbonization (HTC) is an effective strategy for high-value utilization of tea residue (TR), and it was noticed the aqueous phase (AP) has not been extensively studied. This study aimed to investigate the chemical components and characteristics of the AP, and applied it in active food packaging films. The results showed that the total phenolic content of AP was 1.86 mg GAE/mL, and the main compounds in AP were organic acids, alcohols, and amino acids. The AP showed excellent antibacterial activity and antioxidant capacity. The active films were prepared using the casting method. The 4:7-AP/PVA film showed outstanding mechanical properties (tensile strength = 34.18 MPa, elongation at break = 458.67%), antioxidant ability (DPPH scavenging capacity 92.01%), antibacterial activity, water resistance and biocompatibility. The banana preservation test showed the AP/PVA films could successfully prolong the shelf-life of bananas and have the potential to be food packaging films.
RESUMEN
BACKGROUND: Acute kidney injury (AKI) is not only a complication but also a serious threat to patients with cerebral infarction (CI). This study aimed to explore the application of interpretable machine learning algorithms in predicting AKI in patients with cerebral infarction. METHODS: The study included 3920 patients with CI admitted to the Intensive Care Unit and Emergency Medicine of the Central Hospital of Lishui City, Zhejiang Province. Nine machine learning techniques, including XGBoost, logistics, LightGBM, random forest (RF), AdaBoost, GaussianNB (GNB), Multi-Layer Perceptron (MLP), support vector machine (SVM), and k-nearest neighbors (KNN) classification, were used to develop a predictive model for AKI in these patients. SHapley Additive exPlanations (SHAP) analysis provided visual explanations for each patient. Finally, model effectiveness was assessed using metrics such as average precision (AP), sensitivity, specificity, accuracy, F1 score, precision-recall (PR) curve, calibration plot, and decision curve analysis (DCA). RESULTS: The XGBoost model performed better in the internal validation set and the external validation set, with an AUC of 0.940 and 0.887, respectively. The five most important variables in the model were, in order, glomerular filtration rate, low-density lipoprotein, total cholesterol, hemiplegia and serum kalium. CONCLUSION: This study demonstrates the potential of interpretable machine learning algorithms in predicting CI patients with AKI.
Asunto(s)
Lesión Renal Aguda , Infarto Cerebral , Unidades de Cuidados Intensivos , Aprendizaje Automático , Valor Predictivo de las Pruebas , Humanos , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/sangre , Lesión Renal Aguda/terapia , Masculino , Femenino , Anciano , Persona de Mediana Edad , Infarto Cerebral/diagnóstico , Infarto Cerebral/etiología , Factores de Riesgo , Medición de Riesgo , China/epidemiología , Pronóstico , Reproducibilidad de los Resultados , Anciano de 80 o más Años , Técnicas de Apoyo para la Decisión , Estudios Retrospectivos , Diagnóstico por ComputadorRESUMEN
Converting lignin into aromatic chemicals is a promising strategy for the high-value utilization of lignocellulosic feedstock. However, the inherent heterogeneity of lignin poses a significant obstacle to achieving efficient conversion and optimal product yields within bio-refinery systems. Herein, we employed a one-step fractionation method to enhance lignin homogeneity and utilized the THF/DMSO-EtONa (tetrahydrofuran/dimethyl sulfoxide-sodium ethoxide) system to depolymerize the fractionated lignin. Three protic and three aprotic solvents were used for fractionation. The impact of the solvent properties on the structure and the depolymerization efficiency of the fractionated lignin was investigated. Methanol-fractionated lignin generated the benzoic acid compounds with a yield of 30â wt%, 50 % higher than that of the unfractionated lignin. The polarities (δP), hydrogen bonding abilities (δH), and viscosities (η) of selected protic solvents showed strong linear correlation with molecular weight (Mw), polymer dispersity index (PDI), and syringyl/guaiacyl ratio (S/G ratio) of the fractionated lignin, as well as the total yield of benzoic acid compounds derived from the ß-O-4 bond cleavage. This study elucidates the relationship between solvent properties and lignin structure and proposes a promising approach for refining lignin to enhance utilization efficiency, thereby presenting a potential strategy for value-added application of complex lignin polymers.
RESUMEN
BACKGROUND: Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced (ECE) delivery of lumen-apposing metal stent (LAMS) is gradually being recognized as a viable palliative technique for malignant biliary obstruction after endoscopic retrograde cholangiopancreatography (ERCP) failure. However, most of the studies that have assessed its efficacy and safety were small and heterogeneous. Prior meta-analyses of six or fewer studies that were published 2 years ago were therefore underpowered to yield convincing evidence. AIM: To update the efficacy and safety of ECE-LAMS for treatment of biliary obstruction after ERCP failure. METHODS: We searched PubMed, EMBASE, and Scopus databases from the inception of the ECE technique to May 13, 2022. Primary outcome measure was pooled technical success rate, and secondary outcomes were pooled rates of clinical success, reintervention, and adverse events. Meta-analysis was performed using a random-effects model following Freeman-Tukey double-arcsine transformation in R software (version 4.1.3). RESULTS: Fourteen eligible studies involving 620 participants were ultimately included. The pooled rate of technical success was 96.7%, and clinical success was 91.0%. Adverse events were reported in 17.5% of patients. Overall reintervention rate was 7.3%. Subgroup analyses showed results were generally consistent. CONCLUSION: ECE-LAMS has favorable success with acceptable adverse events in relieving biliary obstruction when ERCP is impossible. The consistency of results across most subgroups suggested that this is a generalizable approach.
RESUMEN
Purpose: Investigating the efficacy of intraoperative fractionated intravenous esketamine in the prevention of rebound pain after cessation of thoracic paravertebral nerve blockade. Methods: One hundred and twenty patients who underwent elective thoracoscopic lobectomy were selected for the study and were randomly divided into two groups, the esketamine group was given 0.5 mg/kg and 0.3 mg/kg of esketamine at the induction of anaesthesia and 30 minutes before the end of the operation, respectively, and the control group was given an equal amount of saline. The incidence of rebound pain (RP) 7 days after surgery and postoperative recovery were compared between the two groups. Results: The NRS pain scores at 24 and 48 hours postoperatively in the esketamine group were significantly lower than those in the control group (P < 0.05). The incidence of postoperative rebound pain was significantly lower in the esketamine group than in the control group (P < 0.05). The consumption of sufentanil was less in the esketamine group in the postoperative 48 hours (P < 0.05). Postoperative recovery was compared between the two groups and the difference was not statistically significant. Conclusion: Intravenous esketamine reduces postoperative pain scores, decreases the incidence of rebound pain after cessation of thoracic paravertebral block, and reduces opioid consumption.
Asunto(s)
Ketamina , Bloqueo Nervioso , Humanos , Estudios Prospectivos , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Analgésicos Opioides/uso terapéutico , Administración IntravenosaRESUMEN
BACKGROUND: Nicotinamide adenine dinucleotide (NAD+) plays a key role in neuroinflammation and neurodegeneration and provides anti-inflammatory and neuroprotective effects in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). AIM: In this study, we aimed to investigate whether NAD+ affects differentially expressed genes (DEGs) in splenocytes of EAE mice to reveal candidate genes for the pathogenesis of MS. METHODS: The EAE model was used to perform an intervention on NAD+ to investigate its potential as a protective agent in inflammation and demyelination. Transcriptome analysis of nerve tissue was carried out to gain better insights into NAD+ function. Effects of NAD+ on DEGs in the splenocytes of EAE mice were investigated to determine its anti-inflammatory effect. RESULTS: NAD+ in EAE mice showed the clinical score was significantly improved (EAE 3.190 ± 0.473 vs. NAD+ 2.049 ± 0.715). DEGs (MBOAT2, SLC25A21, and SOX6) between the EAE and the EAE + NAD+ groups showed that SOX6 was significantly improved after NAD+ treatment compared with the EAE group, and other indicators were improved but did not reach statistical significance. NAD+ exhibited clinical scores in EAE mice, and key inflammation was ameliorated in EAE mice spleen after NAD+ intervention, while transcriptome analysis between EAE and EAE + NAD+ groups showed several DEGs in the underlying mechanism. CONCLUSION: NAD+ on DEGs attenuates disease severity in EAE. Transcriptome analysis on nerve tissue reveals several protein targets in the underlying mechanisms. However, NAD+ does not significantly improve DEGs in the splenocytes of the EAE model.
MBOAT2, SLC25A21, and SOX6 show significant fold change in EAE mice, while SOX6 shows significantly lower expression in the EAE group and the EAE + NAD+ group compared with the Ctrl.NAD+ in the EAE model provides its protective role in inflammation and demyelination.NAD+ exhibits clinical scores in EAE mice.NAD+ does not significantly improve DEGs in splenocytes of the EAE.
RESUMEN
Accidental bleeding is an unavoidable problem in daily life. To avoid the risk of excessive blood loss, it is urgent to design a functional material that can quickly stop bleeding. In this study, an efficient wound dressing for hemostasis was investigated. Based on the characteristics that Ca2+ and fish skin collagen (FSC) could activate the coagulation mechanism, hemostatic cotton was prepared by solvent replacement method using CaCl2, FSC, soluble starch (SS), and polyvinyl alcohol (PVA) as raw materials. The cytotoxicity test showed the Ca2+PVA/FSC-SS hemostatic cottons had good biocompatibility. The activated partial thromboplastin time (APTT) of Ca2+PVA/FSC-SS(4) was 35.34 s, which was 22.07 s faster than that of PVA/FSC-SS, indicating Ca2+PVA/FSC-SS mediated the endogenous coagulation system. In vitro coagulation test, Ca2+PVA/FSC-SS(4) could stop bleeding rapidly within 39.60 ± 5.16 s, and the ability of wound healing was higher than commercial product (Celox). This study developed a rapid procoagulant and hemostatic material, which had a promising application in a variety of environments.
Asunto(s)
Hemostáticos , Animales , Hemostáticos/farmacología , Almidón/farmacología , Hemostasis , Coagulación Sanguínea , Colágeno , Alcohol Polivinílico , Hemorragia , Etanol , AntibacterianosRESUMEN
The development of a persistent luminescence system with long-lived phosphorescence and color-tunable afterglow at room temperature represents a challenge, largely due to the intensive non-radiative deactivation pathway. In this study, an ultralong-lived room temperature phosphorescence (RTP) system has been achieved using a hydrogen-bonding strategy where poly(vinyl alcohol) (PVA) matrices were doped with tryptophan (Trp) derivatives. The PVA film doped with N-α-(9-Fluorenylmethoxycarbonyl)-L-tryptophan (Fmoc-L-Trp) exhibited a long-lived phosphorescence emission of up to 3859.70â ms, and a blue afterglow for a duration greater than 34â s, under ambient conditions. The introduction of two other fluorescent dyes (i. e., Rhodamine B and Basicred14) to the PVA film facilitates adjustment to the color of the afterglow from blue to orange, and pink, by a triplet-to-singlet Förster-resonance energy transfer (TS-FRET) process. These films have been successfully applied in silk-screen printing and in multicolor afterglow light-emitting diode (LED) arrays.
RESUMEN
Achieving excellent ultraviolet (UV) blocking properties and maintaining high light transmittance are highly challenging. In this study, a facile and green polymer-assisted vacuum filtration strategy was used to prepare cellulose nanocrystal (CNC) one-dimensional photonic crystal (1DPhC) films with excellent UV-blocking performance and good transparency. The polymer-assisted self-assembly behaviors of CNC and the hydrogen bonding interaction between CNC, polyethylene glycol (PEG), and graphene oxide (GO) drive the homogeneous distribution and parallel alignment of GO. The UV absorption of GO and high reflection of UV resulting from the chiral nematic structure of CNCs result in excellent UV-blocking and high visible light transmission. Besides, the strong hydrogen bonding interaction among CNC, PEG, and GO endows the films with obviously increased mechanical properties. The UV-blocking and the transparency of the CNC composite films could reach 98.3 % and 60.5 %, respectively. Besides, the strain at break of the composite film reached 1.72 ± 0.11 %, which was 535.94 % of neat CNC films. The CNC composite films present great potential in the field of UV-blocking glass, sensors, anti-counterfeiting measures, radiation protection, and so on.
RESUMEN
Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role. OECs can also undergo reprogramming to transform into neurons and survive and mature after transplantation. Currently, many studies have confirmed the repairing effect of OECs after transplantation into injured nerves, and safe and effective results have been obtained in clinical trials. However, the specific repair mechanism of OECs among them is not quite clear. For this purpose, we focus here on the repair mechanisms of OECs, which are summarized as follows: neuroprotection, secretion of bioactive factors, limitation of inflammation and immune regulation, promotion of myelin and axonal regeneration, and promotion of vascular proliferation. In addition, integrating the aspects of harvesting, purification, and prognosis, we found that OECs may be more suitable for transplantation than NSCs and Schwann cells, but this does not completely discard the value of these classical cells. Overall, OECs are considered to be one of the most promising transplantation targets for the treatment of nerve injury disorders.
Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Bulbo Olfatorio , Vaina de Mielina , Neuronas , Trasplante de Células/métodos , Regeneración Nerviosa , NeuroglíaRESUMEN
Intestinal fibrosis is one of the major complications of inflammatory bowel disease (IBD) and a pathological process that significantly impacts patient prognosis and treatment selection. Although current imaging assessment and clinical markers are widely used for the diagnosis and stratification of fibrosis, these methods suffer from subjectivity and limitations. In this study, we aim to develop a radiomics diagnostic model based on multi-slice computed tomography (MSCT) and clinical factors. MSCT images and relevant clinical data were collected from 218 IBD patients, and a large number of quantitative image features were extracted. Using these features, we constructed a radiomics model and transformed it into a user-friendly diagnostic nomogram. A nomogram was developed to predict fibrosis in IBD by integrating multiple factors. The nomogram exhibited favorable discriminative ability, with an AUC of 0.865 in the validation sets, surpassing both the logistic regression (LR) model (AUC = 0.821) and the clinical model (AUC = 0.602) in the test set. In the train set, the LR model achieved an AUC of 0.975, while the clinical model had an AUC of 0.735. The nomogram demonstrated superior performance with an AUC of 0.971, suggesting its potential as a valuable tool for predicting fibrosis in IBD and improving clinical decision-making. The radiomics nomogram, incorporating MSCT and clinical factors, demonstrates promise in stratifying fibrosis in IBD. The nomogram outperforms traditional clinical models and offers personalized risk assessment. However, further validation and addressing identified limitations are necessary to enhance its applicability.