RESUMEN
Targeted degradation of proteins by chimeric heterobifunctional degraders has emerged as a major drug discovery paradigm. Despite the increased interest in this approach, the criteria dictating target protein degradation by a degrader remain poorly understood, and potent target engagement by a degrader does not strongly correlate with target degradation. In this study, we present the biochemical characterization of an epidermal growth factor receptor (EGFR) degrader that potently binds both wild-type and mutant EGFR, but only degrades EGFR mutant variants. Mechanistic studies reveal that ternary complex half-life strongly correlates with processive ubiquitination with purified components and mutant-selective degradation in cells. We present cryoelectron microscopy and hydrogen-deuterium exchange mass spectroscopy data on wild-type and mutant EGFR ternary complexes, which demonstrate that potent target degradation can be achieved in the absence of stable compound-induced protein-protein interactions. These results highlight the importance of considering target conformation during degrader development as well as leveraging heterobifunctional ligand binding kinetics to achieve robust target degradation.
RESUMEN
Dysregulation of mitophagy, whereby damaged mitochondria are labeled for degradation by the mitochondrial kinase PINK1 and E3 ubiquitin ligase Parkin with phosphorylated ubiquitin chains (p-S65 ubiquitin), may contribute to neurodegeneration in Parkinson's disease. Here, we identify a phosphatase antagonistic to PINK1, protein phosphatase with EF-hand domain 2 (PPEF2), that can dephosphorylate ubiquitin and suppress PINK1-dependent mitophagy. Knockdown of PPEF2 amplifies the accumulation of p-S65 ubiquitin in cells and enhances baseline mitophagy in dissociated cortical cultures. Overexpressing enzymatically active PPEF2 reduces the p-S65 ubiquitin signal in cells, and partially purified PPEF2 can dephosphorylate recombinant p-S65 ubiquitin chains in vitro. Using a mass spectrometry approach, we have identified several p-S65-ubiquitinated proteins following mitochondrial damage that are inversely regulated by PPEF2 and PINK1. Interestingly, many of these proteins are involved in nuclear processes such as DNA repair. Collectively, PPEF2 functions to suppress mitochondrial quality control on a cellular level through dephosphorylation of p-S65 ubiquitin.