Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385023

RESUMEN

Multivesicular bodies are key endosomal compartments implicated in cellular quality control through their degradation of membrane-bound cargo proteins1-3. The ATP-consuming ESCRT protein machinery mediates the capture and engulfment of membrane-bound cargo proteins through invagination and scission of multivesicular-body membranes to form intraluminal vesicles4,5. Here we report that the plant ESCRT component FREE16 forms liquid-like condensates that associate with membranes to drive intraluminal vesicle formation. We use a minimal physical model, reconstitution experiments and in silico simulations to identify the dynamics of this process and describe intermediate morphologies of nascent intraluminal vesicles. Furthermore, we find that condensate-wetting-induced line tension forces and membrane asymmetries are sufficient to mediate scission of the membrane neck without the ESCRT protein machinery or ATP consumption. Genetic manipulation of the ESCRT pathway in several eukaryotes provides additional evidence for condensate-mediated membrane scission in vivo. We find that the interplay between condensate and machinery-mediated scission mechanisms is indispensable for osmotic stress tolerance in plants. We propose that condensate-mediated scission represents a previously undescribed scission mechanism that depends on the physicomolecular properties of the condensate and is involved in a range of trafficking processes. More generally, FREE1 condensate-mediated membrane scission in multivesicular-body biogenesis highlights the fundamental role of wetting in intracellular dynamics and organization.

2.
Methods Mol Biol ; 2841: 19-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115762

RESUMEN

Newly synthesized proteins are delivered to the apoplast via conventional or unconventional protein secretion in eukaryotes. In plants, proteins are secreted to perform various biological functions. Conserved from yeast to mammals, both conventional and unconventional protein secretion pathways have been revealed in plants. In the conventional protein secretion pathway, secretory proteins with a signal peptide are translocated into the endoplasmic reticulum and transported to the extracellular region via the endomembrane system. On the contrary, unconventional protein secretion pathways have been demonstrated to mediate the secretion of the leaderless secretory proteins. In this chapter, we summarize the updated findings and provide a comprehensive overview of protein secretion pathways in plants.


Asunto(s)
Retículo Endoplásmico , Células Vegetales , Proteínas de Plantas , Transporte de Proteínas , Vías Secretoras , Células Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Retículo Endoplásmico/metabolismo , Señales de Clasificación de Proteína , Plantas/metabolismo
3.
Plant Commun ; 5(7): 100891, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38561965

RESUMEN

Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.


Asunto(s)
Sequías , Fabaceae , Genoma de Planta , Fabaceae/genética , Fabaceae/fisiología , Estrés Fisiológico/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Filogenia
4.
Autophagy ; 20(6): 1452-1454, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38305204

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK), the central energy sensor in more complex eukaryotes, can activate macroautophagy/autophagy upon cellular energy deficiency. However, the regulatory role of nutrient sensing in mediating phagophore closure to generate an autophagosome remains unknown. The evolutionarily conserved endosomal sorting complexes required for transport (ESCRT) machinery has been postulated to regulate phagophore sealing, yet the signaling pathway modulating the ESCRT complex relocation from multivesicular body (MVB) to phagophore for closure remains unknown. We recently identified a plant unique pleiotropic protein FREE1 (FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1), which is phosphorylated by the plant energy sensor SnRK1 (SNF1-related kinase 1) and bridges the ATG conjugation system and ESCRT machinery to regulate phagophore sealing upon nutrient starvation. This study elucidated the bona fide roles and underlying mechanism of cellular energy-sensing pathways in regulating compartment sealing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Autofagia/fisiología , Autofagosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fosforilación , Transducción de Señal , Proteínas de Transporte Vesicular
5.
New Phytol ; 240(1): 41-60, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37507353

RESUMEN

The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.


Asunto(s)
Endosomas , Plantas , Plantas/metabolismo , Endosomas/metabolismo , Vacuolas/metabolismo , Cuerpos Multivesiculares/metabolismo , Transporte de Proteínas , Aparato de Golgi/metabolismo , Red trans-Golgi/metabolismo
6.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37499659

RESUMEN

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Asunto(s)
Tecnología de Genética Dirigida , Oryza , Hibridación Genética , Oryza/genética , Fitomejoramiento/métodos , Aislamiento Reproductivo , Infertilidad Vegetal
7.
Nat Commun ; 14(1): 1768, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997511

RESUMEN

The energy sensor AMP-activated protein kinase (AMPK) can activate autophagy when cellular energy production becomes compromised. However, the degree to which nutrient sensing impinges on the autophagosome closure remains unknown. Here, we provide the mechanism underlying a plant unique protein FREE1, upon autophagy-induced SnRK1α1-mediated phosphorylation, functions as a linkage between ATG conjugation system and ESCRT machinery to regulate the autophagosome closure upon nutrient deprivation. Using high-resolution microscopy, 3D-electron tomography, and protease protection assay, we showed that unclosed autophagosomes accumulated in free1 mutants. Proteomic, cellular and biochemical analysis revealed the mechanistic connection between FREE1 and the ATG conjugation system/ESCRT-III complex in regulating autophagosome closure. Mass spectrometry analysis showed that the evolutionary conserved plant energy sensor SnRK1α1 phosphorylates FREE1 and recruits it to the autophagosomes to promote closure. Mutagenesis of the phosphorylation site on FREE1 caused the autophagosome closure failure. Our findings unveil how cellular energy sensing pathways regulate autophagosome closure to maintain cellular homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Autofagosomas , Proteínas de Transporte Vesicular , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(5): e2208351120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36696447

RESUMEN

In plants, the endomembrane system is tightly regulated in response to environmental stresses for maintaining cellular homeostasis. Autophagosomes, the double membrane organelles forming upon nutrient deprivation or stress induction, degrade bulky cytosolic materials for nutrient turnover. Though abiotic stresses have been reported to induce plant autophagy, few receptors or regulators for selective autophagy have been characterized for specific stresses. Here, we have applied immunoprecipitation followed by tandem mass spectrometry using the autophagosome marker protein ATG8 as bait and have identified the E3 ligase of the ufmylation system Ufl1 as a bona fide ATG8 interactor under salt stress. Notably, core components in the ufmylation cascade, Ufl1 and Ufm1, interact with the autophagy kinase complexes proteins ATG1 and ATG6. Cellular and genetic analysis showed that Ufl1 is important for endoplasmic reticulum (ER)-phagy under persisting salt stress. Loss-of-function mutants of Ufl1 display a salt stress hypersensitive phenotype and abnormal ER morphology. Prolonged ER stress responses are detected in ufl1 mutants that phenocopy the autophagy dysfunction atg5 mutants. Consistently, expression of ufmylation cascade components is up-regulated by salt stress. Taken together, our study demonstrates the role of ufmylation in regulating ER homeostasis under salt stress through ER-phagy.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Autofagia/fisiología , Estrés Salino
9.
Nat Protoc ; 18(3): 810-830, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599961

RESUMEN

Transport vesicles mediate protein traffic between endomembrane organelles in a highly selective and efficient manner. In vitro reconstitution systems have been widely used for studying mechanisms of vesicle formation, polar trafficking, and cargo specificity in mammals and yeast. However, this technique has not yet been applied to plants because of the large lytic vacuoles and rigid cell walls. Here, we describe an Arabidopsis-derived in vitro vesicle formation system to reconstitute, purify and characterize plant-derived coat protein complex II (COPII) vesicles. In this protocol, we provide a detailed method for the isolation of microsomes and cytosol from Arabidopsis thaliana suspension-cultured cells (7-8 h), in vitro COPII vesicle reconstitution and purification (4-5 h) and biochemical and microscopic analysis using specific antibodies against COPII cargo molecules for reconstitution efficiency evaluation (2 h). We also include detailed sample-preparation steps for analyzing vesicle morphology by cryogenic electron microscopy (1 h) and vesicle cargoes by quantitative proteomics (4 h). Routinely, the whole procedure takes ~18-20 h of operation time and enables plant researchers without specific expertise to achieve organelle purification or vesicle reconstitution for further characterization.


Asunto(s)
Arabidopsis , Animales , Proteínas , Vesículas Transportadoras , Microscopía Electrónica , Saccharomyces cerevisiae , Células Cultivadas , Mamíferos
10.
Proc Natl Acad Sci U S A ; 120(1): e2211258120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577063

RESUMEN

The retromer is a heteromeric protein complex that localizes to endosomal membranes and drives the formation of endosomal tubules that recycle membrane protein cargoes. In plants, the retromer plays essential and canonical functions in regulating the transport of vacuolar storage proteins and the recycle of endocytosed plasma membrane proteins (PM); however, the mechanisms underlying the regulation of assembly, protein stability, and membrane recruitment of the plant retromer complex remain to be elucidated. In this study, we identify a plant-unique endosomal regulator termed BLISTER (BLI), which colocalizes and associates with the retromer complex by interacting with the retromer core subunits VPS35 and VPS29. Depletion of BLI perturbs the assembly and membrane recruitment of the retromer core VPS26-VPS35-VPS29 trimer. Consequently, depletion of BLI disrupts retromer-regulated endosomal trafficking function, including transport of soluble vacuolar proteins and recycling of endocytosed PIN-FORMED (PIN) proteins from the endosomes back to the PM. Moreover, genetic analysis in Arabidopsis thaliana mutants reveals BLI and core retromer interact genetically in the regulation of endosomal trafficking. Taken together, we identified BLI as a plant-specific endosomal regulator, which functions in retromer pathway to modulate the recycling of endocytosed PM proteins and the trafficking of soluble vacuolar cargoes.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Endosomas/metabolismo , Vacuolas/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Arabidopsis/metabolismo , Nexinas de Clasificación/metabolismo
11.
Plant Physiol ; 190(2): 1199-1213, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35876822

RESUMEN

ADP-ribosylation factor (ARF) family proteins, one type of small guanine-nucleotide-binding (G) proteins, play a central role in regulating vesicular traffic and organelle structures in eukaryotes. The Arabidopsis (Arabidopsis thaliana) genome contains more than 21 ARF proteins, but relatively little is known about the functional heterogeneity of ARF homologs in plants. Here, we characterized the function of a unique ARF protein, ARFD1B, in Arabidopsis. ARFD1B exhibited both cytosol and punctate localization patterns, colocalizing with a Golgi marker in protoplasts and transgenic plants. Distinct from other ARF1 homologs, overexpression of a dominant-negative mutant form of ARFD1B did not alter the localization of the Golgi marker mannosidase I (ManI)-RFP in Arabidopsis cells. Interestingly, the ARFD1 artificial microRNA knockdown mutant arfd1 displayed a deleterious growth phenotype, while this phenotype was restored in complemented plants. Further, confocal imaging and transmission electron microscopy analyses of the arfd1 mutant revealed defective cell plate formation and abnormal Golgi morphology. Pull-down and liquid chromatography-tandem mass spectrometry analyses identified Coat Protein I (COPI) components as interacting partners of ARFD1B, and subsequent bimolecular fluorescence complementation, yeast (Saccharomyces cerevisiae) two-hybrid, and co-immunoprecipitation assays further confirmed these interactions. These results demonstrate that ARFD1 is required for cell plate formation, maintenance of Golgi morphology, and plant growth in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteína Coat de Complejo I/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al GTP/metabolismo , Aparato de Golgi/metabolismo , Guanina/metabolismo , MicroARNs/metabolismo , Nucleótidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
12.
FEBS Lett ; 596(17): 2314-2323, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35486434

RESUMEN

In eukaryotes, the endomembrane system allows for spatiotemporal compartmentation of complicated cellular processes. The plant endomembrane system consists of the endoplasmic reticulum, the Golgi apparatus, the trans-Golgi network, the multivesicular body and the vacuole. Anterograde traffic from the endoplasmic reticulum to the Golgi apparatus is mediated by coat protein complex II (COPII) vesicles. Autophagy, an evolutionarily conserved catabolic process that turns over cellular materials upon nutrient deprivation or in adverse environments, exploits double-membrane autophagosomes to recycle unwanted constituents in the lysosome/vacuole. Accumulating evidence reveals novel functions of plant COPII vesicles in autophagy and their regulation by abiotic stresses. Here, we summarize current knowledge about plant COPII vesicles in endomembrane trafficking and then highlight recent findings showing their distinct roles in modulating the autophagic flux and stress responses.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Aparato de Golgi , Autofagia , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas/fisiología
13.
Nat Plants ; 7(10): 1335-1346, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34621047

RESUMEN

Plants live as sessile organisms with large-scale gene duplication events and subsequent paralogue divergence during evolution. Notably, plant paralogues are expressed tissue-specifically and fine-tuned by phytohormones during various developmental processes. The coat protein complex II (COPII) is a highly conserved vesiculation machinery mediating protein transport from the endoplasmic reticulum to the Golgi apparatus in eukaryotes1. Intriguingly, Arabidopsis COPII paralogues greatly outnumber those in yeast and mammals2-6. However, the functional diversity and underlying mechanism of distinct COPII paralogues in regulating protein endoplasmic reticulum export and coping with various adverse environmental stresses are poorly understood. Here we characterize a novel population of COPII vesicles produced in response to abscisic acid, a key phytohormone regulating abiotic stress responses in plants. These hormone-induced giant COPII vesicles are regulated by an Arabidopsis-specific COPII paralogue and carry stress-related channels/transporters for alleviating stresses. This study thus provides a new mechanism underlying abscisic acid-induced stress responses via the giant COPII vesicles and answers a long-standing question on the evolutionary significance of gene duplications in Arabidopsis.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Ácido Abscísico/metabolismo
15.
Autophagy ; 17(7): 1785-1787, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34048304

RESUMEN

Increasing evidence supports the bona fide function of the coat protein complex II (COPII) machinery in regulating autophagosomes biogenesis during macroautophagy/autophagy induced by nutrient starvation. However, the participation of the COPII machinery in the plant autophagy pathway remains elusive. We recently identified a unique population of COPII vesicles containing AT3G62560/AtSar1d-AT1G02130/AtRabD2a that functions in modulating autuphagosome biogenesis in Arabidopsis thaliana. Proteomic analysis identified the mechanistic connection between autophagy-related (ATG) proteins and a subset of specific COPII paralogs, including AtSar1d. Mutants of AtSar1d affect autophagosome progression and display starvation-related phenotypes. AtSar1d interacts with ATG8 by a non-canonical motif. Cellular and genetic analysis demonstrated that a plant-unique RAB1/Ypt1 homolog AtRabD2a coordinates with AtSar1d to mediate the specific COPII functions in the autophagy pathway. This study identified a plant-specific nexus in regulating autophagosome biogenesis.


Asunto(s)
Autofagia , Proteínas de Saccharomyces cerevisiae , Autofagosomas , Proteínas Relacionadas con la Autofagia , Proteómica
16.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879613

RESUMEN

In eukaryotes, secretory proteins traffic from the endoplasmic reticulum (ER) to the Golgi apparatus via coat protein complex II (COPII) vesicles. Intriguingly, during nutrient starvation, the COPII machinery acts constructively as a membrane source for autophagosomes during autophagy to maintain cellular homeostasis by recycling intermediate metabolites. In higher plants, essential roles of autophagy have been implicated in plant development and stress responses. Nonetheless, the membrane sources of autophagosomes, especially the participation of the COPII machinery in the autophagic pathway and autophagosome biogenesis, remains elusive in plants. Here, we provided evidence in support of a novel role of a specific Sar1 homolog AtSar1d in plant autophagy in concert with a unique Rab1/Ypt1 homolog AtRabD2a. First, proteomic analysis of the plant ATG (autophagy-related gene) interactome uncovered the mechanistic connections between ATG machinery and specific COPII components including AtSar1d and Sec23s, while a dominant negative mutant of AtSar1d exhibited distinct inhibition on YFP-ATG8 vacuolar degradation upon autophagic induction. Second, a transfer DNA insertion mutant of AtSar1d displayed starvation-related phenotypes. Third, AtSar1d regulated autophagosome progression through specific recognition of ATG8e by a noncanonical motif. Fourth, we demonstrated that a plant-unique Rab1/Ypt1 homolog AtRabD2a coordinates with AtSar1d to function as the molecular switch in mediating the COPII functions in the autophagy pathway. AtRabD2a appears to be essential for bridging the specific AtSar1d-positive COPII vesicles to the autophagy initiation complex and therefore contributes to autophagosome formation in plants. Taken together, we identified a plant-specific nexus of AtSar1d-AtRabD2a in regulating autophagosome biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Autofagosomas/metabolismo , Autofagia/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fagosomas/metabolismo , Transporte de Proteínas/fisiología , Proteómica/métodos , Proteínas R-SNARE/fisiología , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/fisiología
17.
Mol Plant ; 14(6): 905-920, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33794369

RESUMEN

The roles of Rho family guanosine triphosphatases (GTPases) of plants (ROPs) in modulating plant growth and development have been well characterized. However, little is known about the roles of ROP signaling pathways in regulating plant autophagy and autophagosome formation. In this study, we identify a unique ROP signaling mechanism, which mediates developmental to autophagic transition under stress conditions in the model plant Arabidopsis. Loss-of-function mutants of ROP8 showed stress-induced hypersensitive phenotypes and compromised autophagic flux. Similar to other ROPs in the ROP/RAC family, ROP8 exhibits both plasma membrane and cytosolic punctate localization patterns. Upon autophagic induction, active ROP8 puncta colocalize with autophagosomal markers and are degraded inside the vacuole. In human cells, RalB, an RAS subfamily GTPase, engages its effector Exo84 for autophagosome assembly. However, a RalB counterpart is missing in the plant lineage. Intriguingly, we discovered that plant ROP8 promotes autophagy via its downstream effector Sec5. Live-cell super-resolution imaging showed that ROP8 and Sec5 reside on phagophores for autophagosome formation. Taken together, our findings highlight a previously unappreciated role of an ROP8-Sec5 signaling axis in autophagy promotion, providing new insights into how plants utilize versatile ROP signaling networks to coordinate developmental and autophagic responses depending on environmental changes.


Asunto(s)
Arabidopsis/genética , Autofagia/fisiología , Proteínas de Unión al GTP rho/metabolismo , Arabidopsis/enzimología , Autofagia/genética , ADN Complementario/química , ADN Complementario/genética , Unión Proteica , Transducción de Señal , Proteínas de Unión al GTP rho/genética
18.
New Phytol ; 231(1): 193-209, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33772801

RESUMEN

During evolution, land plants generated unique proteins that participate in endosomal sorting and multivesicular endosome (MVE) biogenesis, many of them with specific phosphoinositide-binding capabilities. Nonetheless, the function of most plant phosphoinositide-binding proteins in endosomal trafficking remains elusive. Here, we analysed several Arabidopsis mutants lacking predicted phosphoinositide-binding proteins and first identified fyve4-1 as a mutant with a hypersensitive response to high-boron conditions and defects in degradative vacuolar sorting of membrane proteins such as the borate exporter BOR1-GFP. FYVE4 encodes a plant-unique, FYVE domain-containing protein that interacts with SNF7, a core component of ESCRT-III (Endosomal Sorting Complex Required for Transport III). FYVE4 affects the membrane association of the late-acting ESCRT components SNF7 and VPS4, and modulates the formation of intraluminal vesicles (ILVs) inside MVEs. The critical function of FYVE4 in the ESCRT pathway was further demonstrated by the strong genetic interactions with SNF7B and LIP5. Although the fyve4-1, snf7b and lip5 single mutants were viable, the fyve4-1 snf7b and fyve4-1 lip5 double mutants were seedling lethal, with strong defects in MVE biogenesis and vacuolar sorting of ubiquitinated membrane proteins. Taken together, we identified FYVE4 as a novel plant endosomal regulator, which functions in ESCRTing pathway to regulate MVE biogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Arabidopsis/genética , Arabidopsis/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Desarrollo de la Planta , Transporte de Proteínas , Vacuolas/metabolismo
19.
Curr Biol ; 31(9): 1931-1944.e4, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33711250

RESUMEN

The oxidative environment within the mitochondria makes them particularly vulnerable to proteotoxic stress. To maintain a healthy mitochondrial network, eukaryotes have evolved multi-tiered quality control pathways. If the stress cannot be alleviated, defective mitochondria are selectively removed by autophagy via a process termed mitophagy. Despite significant advances in metazoans and yeast, in plants, the molecular underpinnings of mitophagy are largely unknown. Here, using time-lapse imaging, electron tomography, and biochemical assays, we show that uncoupler treatments cause loss of mitochondrial membrane potential and induce autophagy in Arabidopsis. The damaged mitochondria are selectively engulfed by autophagosomes that are labeled by ATG8 proteins in an ATG5-dependent manner. Friendly, a member of the clustered mitochondria protein family, is recruited to the damaged mitochondria to mediate mitophagy. In addition to the stress, mitophagy is also induced during de-etiolation, a major cellular transformation during photomorphogenesis that involves chloroplast biogenesis. De-etiolation-triggered mitophagy is involved in cotyledon greening, pointing toward an inter-organellar crosstalk mechanism. Altogether, our results demonstrate how plants employ mitophagy to recycle damaged mitochondria during stress and development.


Asunto(s)
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Autofagosomas , Autofagia , Proteína 5 Relacionada con la Autofagia , Mitofagia , Saccharomyces cerevisiae
20.
Methods Mol Biol ; 2200: 157-165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33175377

RESUMEN

Transient expression using protoplasts isolated from Arabidopsis suspension culture cells is a fast and useful tool for analyzing protein subcellular localization and dynamics in plant cells. Recently, super-resolution imaging techniques such as N-SIM (Nikon, Structured Illumination Microscopy) are widely used in cell biology study, allowing cell biologists to obtain unattainable details and relationships of cell structures and functions by conventional confocal imaging. To facilitate the usage of protoplasts transient expression and super-resolution imaging for protein localization and dynamic analysis in plant cell biology research, here we describe updated protocols of protoplasts isolation from Arabidopsis suspension culture cells and transient expression assay for protein trafficking and localization study. Further, using GFP-tagged ERES (Endoplasmic Reticulum Exit Site) marker proteins and RFP-tagged Golgi marker as examples, we illustrate the major tools and methods for protein localization analysis using super-resolution imaging.


Asunto(s)
Arabidopsis , Expresión Génica , Proteínas Fluorescentes Verdes , Células Vegetales/metabolismo , Proteínas Recombinantes de Fusión , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...