Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(15): e2310769, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38239004

RESUMEN

It is challenging to control the electronic structure of 2D transition metal dichalcogenides (TMD) for extended applications in renewable energy devices. Here, ReSe2-VSe2 (Re1- xVxSe2) alloy nanosheets over the whole composition range via a colloidal reaction is synthesized. Increasing x makes the nanosheets more metallic and induces a 1T″-to-1T phase transition at x = 0.5-0.6. Compared to the MoSe2-VSe2 and WSe2-VSe2 alloy nanosheets, ReSe2 and VSe2 are mixed more homogeneously at the atomic scale. The alloy nanosheets at x = 0.1-0.7 exhibit an enhanced electrocatalytic activity toward acidic hydrogen evolution reaction (HER). In situ X-ray absorption fine structure measurements reveal that alloying caused the Re and V atoms to be synergically more active in the HER. Gibbs free energy (ΔGH*) and density of state calculations confirm that alloying and Se vacancies effectively activate the metal sites toward HER. The composition dependence of HER performance is explained by homogenous atomic mixing with the increased Se vacancies. The study provides a strategy for designing new TMD alloy nanosheets with enhanced catalytic activity.

2.
Phys Chem Chem Phys ; 25(29): 19834-19844, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37455608

RESUMEN

First of all, we show that two kinds of sandwich bilayers (BLs) are dynamically, thermally, and mechanically stable, which are degenerate p-type materials with intercalated Ca atoms, i.e., Nb-doped MoS2 homobilayers (HoBLs) and Nb-doped WS2-MoS2 heterobilayers (HtBLs) with 25% Nb content. Specifically, their interlayer bindings are five times stronger than van der Waals interactions in their pristine counterparts. Both of them are semiconductors with indirect band gaps in the visible region within the HSE06 exchange-correlation functional. Depending upon the presence and absence of centrosymmetry, they display interesting spin-valley coupling effects in such a way that opposite hidden spin polarization or opposite spin splitting is observed at opposite k-points. They can be easily engineered into direct gap materials under compressive (>2%) strain along the zigzag direction even with an explicit consideration of giant spin splitting. Under strain, they satisfy thermodynamic conditions for bifunctional catalysis in photocatalytic water splitting. In addition, the photoholes of the BLs can be subjected to lower overpotentials than those of pristine BLs for the oxygen evolution reaction. Electrons and holes in the sandwich HtBL can be separated into different layers under photon irradiation, allowing it to be more efficient than the corresponding HoBL in solar energy harvesting.

3.
ACS Nano ; 17(3): 2968-2979, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36656992

RESUMEN

Ternary alloying of transition metal dichalcogenides (TMDs) has the potential for altering the electronic structure of materials to suit electrochemical applications. Herein, we synthesized (MoWV)Se2 nanosheets at various compositions via a colloidal reaction. The mole fraction of V atoms (xV) was successfully increased up to 0.8, producing a metallic phase that is highly durable against hydration. Furthermore, we synthesized (MoW)Se2 nanosheets over the entire composition range. The atomic mixing of the ternary alloys is more random than that of the constitutional binary alloys, as supported by first-principles calculations. Compared to binary alloying, ternary alloying more effectively enhanced the electrocatalytic activity for acidic hydrogen evolution reaction (HER). The HER performance increased upon increasing xV to 0.44, and thereafter, it declined at higher xV primarily owing to surface oxidation. The analysis of Gibbs free energy for H adsorption revealed that ternary alloying strongly activates the basal plane for the HER. VSe2 contains numerous sites favorable for H adsorption, facilitating the composition-dependent HER. These results provide a pioneering strategy for designing multicomponent TMD catalysts that maximize the advantages of each component.

4.
RSC Adv ; 12(51): 32796-32802, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36425197

RESUMEN

The compounds Sc2Te3 and Sb2Te3 have the same crystal structure. Ge-Sb-Te alloys are also the most common prototype phase change memory (PCM) compounds in the GeTe-Sb2Te3 pseudo-binary combination. Recently, alloying Sc atoms into Sb2Te3 has enabled sub-nanosecond switching in large conventional phase-change random access memory (PCRAM) devices. However, prior study on the electronic structure and dynamic properties of the Sc2Te3 system is very limited. In this work, we investigate the effect of temperature on the structural, dynamic, and electronic properties of the Sc2Te3 compound through ab initio molecular dynamics simulations. We show that the distorted-octahedral clusters are connected by four-fold rings even at higher temperatures. Moreover, our results clearly illustrate a liquid-to-glass transition temperature, which is between approximately 773 K and 950 K. The effect of temperature changes on the electronic properties of the system manifests as a metal-to-semiconductor transition. The band gap obtained using the mBJLDA functional is twice the value obtained using the PBE functional. Our studies provide useful insight into the local structure and dynamic and electronic properties of the Sc2Te3 system at the atomic level. We hope that this work could stimulate more theoretical work on the development of cache-type phase-change memory and broaden its application in the field of PCM.

5.
ACS Nano ; 16(9): 13949-13958, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36098669

RESUMEN

Composition modulation of transition metal dichalcogenides is an effective way to engineer their crystal/electronic structures for expanded applications. Here, fully composition-tuned W1-xNbxSe2 alloy nanosheets were produced via colloidal synthesis. These nanosheets ultimately exhibited a notable transition between WSe2 and NbSe2 hexagonal phases at x = 0.6. As x approaches 0.6, point doping is converted into cluster doping and eventually separated domains of WSe2 and NbSe2. Extensive density functional theory calculations predicted the composition-dependent crystal structures and phase transitions, consistently with the experiments. The electrocatalytic activity for the hydrogen evolution reaction (HER) in acidic electrolyte was significantly enhanced at x = 0.2, which was linked with the d-band center. The Gibbs free energy for the H adsorption at various basal and edge sites supported the enhanced HER performance of the metallic alloy nanosheets. We suggested that the dispersed doping structures of Nb atoms resulted in the best HER performance. Our findings highlight the significance of composition tuning in enhancing the catalytic activity of alloys.

6.
Nanoscale Adv ; 4(15): 3218-3225, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36132817

RESUMEN

The polymorphism of nanostructures is of paramount importance for many promising applications in high-performance nanodevices. We report the chemical vapor deposition synthesis of Ga2S3 nanowires (NWs) that show the consecutive phase transitions of monoclinic (M) → hexagonal (H) → wurtzite (W) → zinc blende (C) when lowering the growth temperature from 850 to 600 °C. At the highest temperature, single-crystalline NWs were grown in the thermodynamically stable M phase. Two types of H phase exhibited 1.8 nm periodic superlattice structures owing to the distinctively ordered Ga sites. They consisted of three rotational variants of the M phase along the growth direction ([001]M = [0001]H/W) but with different sequences in the variants. The phases shared the same crystallographic axis within the NWs, producing novel core-shell structures to illustrate the phase evolution. The relative stabilities of these phases were predicted using density functional theory calculations, and the results support the successive phase evolution. Photodetector devices based on the p-type M and H phase Ga2S3 NWs showed excellent UV photoresponse performance.

7.
Adv Mater ; 34(41): e2205524, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35985986

RESUMEN

Alloying of transition metal dichalcogenides (TMDs) is a pioneering method for engineering electronic structures with expanded applications. In this study, MoSe2 -VSe2 -NbSe2 ternary alloy nanosheets are synthesized via a colloidal reaction. The composition is successfully tuned over a wide range to adjust the 2H-1T phase transition. The alloy nanosheets consist of miscible atomic structures at all compositions, which is distinct from immiscible binary alloys. Compared to each binary alloy, the ternary alloys display higher electrocatalytic activity toward the hydrogen evolution reaction (HER) in an acidic electrolyte. The HER performance exhibits a volcano-type composition dependence, which is correlated with the experimental d-band center (εd ). Spin-polarized density functional theory (DFT) calculations consistently predict the homogenous atomic distributions. The Gibbs free energy of H adsorption (ΔGH* ) and the activation barrier (Ea ) support that miscible ternary alloying greatly enhances the HER performance.

8.
ACS Nano ; 16(8): 12569-12579, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35940577

RESUMEN

Tuning the electronic structures of transition metal dichalcogenides (TMD) is essential for their implementation in next-generation energy technologies. In this study, we synthesized composition-tuned WSe2-VSe2 (W1-xVxSe2, x = 0-1) alloyed nanosheets using a colloidal reaction. Alloying the semiconducting WSe2 with VSe2 converts the material into a metallic one, followed by a 2H-to-1T phase transition at x = 0.7. Over a wide composition range, WSe2 and VSe2 are atomically immiscible and form separate ordered domains. The miscible alloy at x = 0.1 displayed enhanced electrocatalytic activity toward the hydrogen evolution reaction (HER) in an acidic electrolyte. This trend was correlated with the d-band center via a volcano-type relationship. Spin-polarized density functional theory calculations consistently predicted the atomic immiscibility, which became more significant at the 2H-1T phase transition composition. The Gibbs free energy of H adsorption on the basal planes (Se or hole sites) and the activation barriers along the Volmer-Heyrovsky reaction pathway supported the enhanced HER performance of the alloy phase, suggesting that the dispersed V-doped structures were responsible for the best HER catalytic activity. Our study demonstrates how the atomic structure of TMD alloy nanosheets plays a crucial role in enhancing catalytic activity.

9.
ACS Nano ; 16(3): 4278-4288, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35245026

RESUMEN

Polytypes of two-dimensional transition metal dichalcogenide can extend the architecture and application of nanostructures. Herein, Nb1-xVxSe2 alloy nanosheets in the full composition range (x) were synthesized by a colloidal reaction. At x = 0.1-0.3, a phase transition occurred from various hexagonal (three 2H and one 4H types) phase NbSe2 to an atomically homogeneous 1T phase VSe2. Density functional theory calculations also revealed a polytypic phase transition at x = 0.3, which was shifted close to 0 in the presence of Se vacancies. Furthermore, the calculations validate favorable formation of Se vacancies at the phase transition. The sample at x = 0.3 exhibited enhanced electrocatalytic activity toward the hydrogen evolution reaction (HER) in 0.5 M H2SO4. The Gibbs free energy indicates that the catalytic HER performance is correlated with the active Se vacancy sites of polytypic structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA