Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Oncogene ; 41(2): 293-300, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34689179

RESUMEN

The RAS→RAF→MEK→ERK pathway is hyperactivated in the majority of human lung adenocarcinoma (LUAD). However, the initial activating mutations induce homeostatic feedback mechanisms that limit ERK activity. How ERK activation reaches the tumor-promoting levels that overcome the feedback and drive malignant progression is unclear. We show here that the lung lineage transcription factor NKX2-1 suppresses ERK activity. In human tissue samples and cell lines, xenografts, and genetic mouse models, NKX2-1 induces the ERK phosphatase DUSP6, which inactivates ERK. In tumor cells from late-stage LUAD with silenced NKX2-1, re-introduction of NKX2-1 induces DUSP6 and inhibits tumor growth and metastasis. We show that DUSP6 is necessary for NKX2-1-mediated inhibition of tumor progression in vivo and that DUSP6 expression is sufficient to inhibit RAS-driven LUAD. Our results indicate that NKX2-1 silencing, and thereby DUSP6 downregulation, is a mechanism by which early LUAD can unleash ERK hyperactivation for tumor progression.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas/genética , Factor Nuclear Tiroideo 1/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones
2.
Elife ; 102021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33821796

RESUMEN

Cancer cells undergo lineage switching during natural progression and in response to therapy. NKX2-1 loss in human and murine lung adenocarcinoma leads to invasive mucinous adenocarcinoma (IMA), a lung cancer subtype that exhibits gastric differentiation and harbors a distinct spectrum of driver oncogenes. In murine BRAFV600E-driven lung adenocarcinoma, NKX2-1 is required for early tumorigenesis, but dispensable for established tumor growth. NKX2-1-deficient, BRAFV600E-driven tumors resemble human IMA and exhibit a distinct response to BRAF/MEK inhibitors. Whereas BRAF/MEK inhibitors drive NKX2-1-positive tumor cells into quiescence, NKX2-1-negative cells fail to exit the cell cycle after the same therapy. BRAF/MEK inhibitors induce cell identity switching in NKX2-1-negative lung tumors within the gastric lineage, which is driven in part by WNT signaling and FoxA1/2. These data elucidate a complex, reciprocal relationship between lineage specifiers and oncogenic signaling pathways in the regulation of lung adenocarcinoma identity that is likely to impact lineage-specific therapeutic strategies.


When cells become cancerous they grow uncontrollably and spread into surrounding healthy tissue. As the cancer progresses different genes are switched on and off which can cause tumor cells to change their identity and transition into other types of cell. How closely tumor cells resemble the healthy tissue they came from can influence how well the cancer responds to treatment. Many lung cancers have an identity similar to normal lung cells. However, some turn off a gene that codes for a protein called NKX2-1, which leads to a type of cancer called invasive mucinous adenocarcinoma (or IMA for short). Cells from this type of cancer develop an identity similar to mucous cells that line the surface of the stomach. But it was unclear how IMA tumor cells that developed from a mutation in the BRAF gene are affected by this loss in NKX2-1, and how transitioning to a different cell type impacts their response to treatment. To investigate this, Zewdu et al. studied lung cells from patients with IMA tumors driven by a mutation in BRAF and cells from mice that have been genetically engineered to have a similar form of cancer. This revealed that the NKX2-1 protein is needed to initiate the formation of cancer cells but is not required for the growth of already established BRAF-driven tumors. Further experiments showed that removing the gene for NKX2-1 made these cancer cells less responsive to drugs known as BRAF/MEK inhibitors that are commonly used to treat cancer. These drugs caused the IMA cancer cells to change their identity and become another type of stomach cell. This identity change was found to depend on two signaling pathways which cells use to communicate. This study provides some explanation of how IMA lung cancers that lack the gene for NKX2-1 resist treatment with BRAF/MEK inhibitors. It also shows new relationships between key genes in these cancers and systems for cell communication. These findings could lead to better therapies for lung cancer, particularly for patients whose tumor cells are deficient in NKX2-1 and therefore require specialized treatment.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Factor Nuclear Tiroideo 1/metabolismo , Proteínas Wnt/metabolismo , Adenocarcinoma del Pulmón/enzimología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Linaje de la Célula , Retroalimentación Fisiológica , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida , Mutación , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factor Nuclear Tiroideo 1/genética , Células Tumorales Cultivadas , Vía de Señalización Wnt
3.
J Clin Invest ; 128(2): 655-667, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29251627

RESUMEN

A critical event in the adaptation to extrauterine life is relaxation of the pulmonary vasculature at birth, allowing for a rapid increase in pulmonary blood flow that is essential for efficient gas exchange. Failure of this transition leads to pulmonary hypertension (PH), a major cause of newborn mortality associated with preterm birth, infection, hypoxia, and malformations including congenital diaphragmatic hernia (CDH). While individual vasoconstrictor and dilator genes have been identified, the coordination of their expression is not well understood. Here, we found that lung mesenchyme-specific deletion of CDH-implicated genes encoding pre-B cell leukemia transcription factors (Pbx) led to lethal PH in mice shortly after birth. Loss of Pbx genes resulted in the misexpression of both vasoconstrictors and vasodilators in multiple pathways that converge to increase phosphorylation of myosin in vascular smooth muscle (VSM) cells, causing persistent constriction. While targeting endothelin and angiotensin, which are upstream regulators that promote VSM contraction, was not effective, treatment with the Rho-kinase inhibitor Y-27632 reduced vessel constriction and PH in Pbx-mutant mice. These results demonstrate a lung-intrinsic, herniation-independent cause of PH in CDH. More broadly, our findings indicate that neonatal PH can result from perturbation of multiple pathways and suggest that targeting the downstream common effectors may be a more effective treatment for neonatal PH.


Asunto(s)
Hernias Diafragmáticas Congénitas/etiología , Proteínas de Homeodominio/metabolismo , Pulmón/embriología , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Alelos , Animales , Apoptosis , Proliferación Celular , Modelos Animales de Enfermedad , Ecocardiografía , Elastina/metabolismo , Femenino , Eliminación de Gen , Hipertensión Pulmonar/etiología , Pulmón/irrigación sanguínea , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Miosinas/metabolismo , Parto , Fosforilación , Arteria Pulmonar/metabolismo , Respiración , Vasoconstricción/fisiología
4.
Neuron ; 91(5): 1005-1020, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27568519

RESUMEN

The clustering of neurons sharing similar functional properties and connectivity is a common organizational feature of vertebrate nervous systems. Within motor networks, spinal motor neurons (MNs) segregate into longitudinally arrayed subtypes, establishing a central somatotopic map of peripheral target innervation. MN organization and connectivity relies on Hox transcription factors expressed along the rostrocaudal axis; however, the developmental mechanisms governing the orderly arrangement of MNs are largely unknown. We show that Pbx genes, which encode Hox cofactors, are essential for the segregation and clustering of neurons within motor columns. In the absence of Pbx1 and Pbx3 function, Hox-dependent programs are lost and the remaining MN subtypes are unclustered and disordered. Identification of Pbx gene targets revealed an unexpected and apparently Hox-independent role in defining molecular features of dorsally projecting medial motor column (MMC) neurons. These results indicate Pbx genes act in parallel genetic pathways to orchestrate neuronal subtype differentiation, connectivity, and organization.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Homeodominio/fisiología , Neuronas Motoras/fisiología , Proteínas Proto-Oncogénicas/fisiología , Factores de Transcripción/fisiología , Aldehído Oxidorreductasas/metabolismo , Animales , Embrión de Pollo , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Ratones , Mutación , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/metabolismo , Médula Espinal/metabolismo , Médula Espinal/fisiología , Factores de Transcripción/genética
5.
J Anat ; 229(1): 153-69, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27075259

RESUMEN

The spleen plays critical roles in immunity and also provides a permissive microenvironment for hematopoiesis. Previous studies have reported that the TALE-class homeodomain transcription factor Pbx1 is essential in hematopoietic stem and progenitor cells (HSPCs) for stem cell maintenance and progenitor expansion. However, the role of Pbx1 in the hematopoietic niche has not been investigated. Here we explored the effects that genetic perturbation of the splenic mesenchymal niche has on hematopoiesis upon loss of members of the Pbx family of homeoproteins. Splenic mesenchyme-specific inactivation of Pbx1 (SKO) on a Pbx2- or Pbx3-deficient genetic background (DKO) resulted in abnormal development of the spleen, which is dysmorphic and severely hypoplastic. This phenotype, in turn, affected the number of HSPCs in the fetal and adult spleen at steady state, as well as markedly impairing the kinetics of hematopoietic regeneration in adult mice after sub-lethal and lethal myelosuppressive irradiation. Spleens of mice with compound Pyx deficiency 8 days following sublethal irradiation displayed significant downregulation of multiple cytokine-encoding genes, including KitL/SCF, Cxcl12/SDF-1, IL-3, IL-4, GM-CSF/Csf2 IL-10, and Igf-1, compared with controls. KitL/SCF and Cxcl12/SDF-1 were recently shown to play key roles in the splenic niche in response to various haematopoietic stresses such as myeloablation, blood loss, or pregnancy. Our results demonstrate that, in addition to their intrinsic roles in HSPCs, non-cell autonomous functions of Pbx factors within the splenic niche contribute to the regulation of hematopoiesis, at least in part via the control of KitL/SCF and Cxcl12/SDF-1. Furthermore, our study establishes that abnormal spleen development and hypoplasia have deleterious effects on the efficiency of hematopoietic recovery after bone marrow injury.


Asunto(s)
Hematopoyesis Extramedular , Proteínas de Homeodominio/fisiología , Factores de Transcripción/fisiología , Animales , Citocinas/metabolismo , Ratones , Ratones Noqueados , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Bazo/fisiología , Estrés Fisiológico
6.
Development ; 142(15): 2653-64, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26138478

RESUMEN

The architecture of an organ's vascular bed subserves its physiological function and metabolic demands. However, the mechanisms underlying gross vascular patterning remain elusive. Using intravital dye labeling and 3D imaging, we discovered that systems-level vascular patterning in the kidney is dependent on the kinetics of vascular mural cell (VMC) differentiation. Conditional ablation of the TALE transcription factor Pbx1 in renal VMC progenitors in the mouse led to the premature upregulation of PDGFRß, a master initiator of VMC-blood vessel association. This precocious VMC differentiation resulted in nonproductive angiogenesis, abnormal renal arterial tree patterning and neonatal death consistent with kidney dysfunction. Notably, we establish that Pbx1 directly represses Pdgfrb, and demonstrate that decreased Pdgfrb dosage in conditional Pbx1 mutants substantially rescues vascular patterning defects and neonatal survival. These findings identify, for the first time, an in vivo transcriptional regulator of PDGFRß, and reveal a previously unappreciated role for VMCs in systems-level vascular patterning.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Homeodominio/metabolismo , Riñón/irrigación sanguínea , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Inmunoprecipitación de Cromatina , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Proteínas de Homeodominio/genética , Imagenología Tridimensional , Hibridación in Situ , Estimación de Kaplan-Meier , Riñón/citología , Cinética , Ratones , Oligonucleótidos/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética
7.
Cell Rep ; 9(2): 674-87, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25373905

RESUMEN

Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here, we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis, we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25(ENU)). Unlike Vps25-null embryos we generated, Vps25(ENU/ENU) mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyperactivation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25(ENU/ENU) Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however, SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Polidactilia/genética , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Extremidades/crecimiento & desarrollo , Retroalimentación Fisiológica , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Polidactilia/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
Dev Cell ; 21(4): 627-41, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21982646

RESUMEN

Morphogenesis of mammalian facial processes requires coordination of cellular proliferation, migration, and apoptosis to develop intricate features. Cleft lip and/or palate (CL/P), the most frequent human craniofacial birth defect, can be caused by perturbation of any of these programs. Mutations of WNT, P63, and IRF6 yield CL/P in humans and mice; however, how these genes are regulated remains elusive. We generated mouse lines lacking Pbx genes in cephalic ectoderm and demonstrated that they exhibit fully penetrant CL/P and perturbed Wnt signaling. We also characterized a midfacial regulatory element that Pbx proteins bind to control the expression of Wnt9b-Wnt3, which in turn regulates p63. Altogether, we establish a Pbx-dependent Wnt-p63-Irf6 regulatory module in midfacial ectoderm that is conserved within mammals. Dysregulation of this network leads to localized suppression of midfacial apoptosis and CL/P. Ectopic Wnt ectodermal expression in Pbx mutants rescues the clefting, opening avenues for tissue repair.


Asunto(s)
Apoptosis , Células Epiteliales/metabolismo , Cara/embriología , Proteínas de Homeodominio/fisiología , Factores Reguladores del Interferón/metabolismo , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/fisiología , Proteínas Wnt/metabolismo , Proteína Wnt3/metabolismo , Animales , Secuencia de Bases , Western Blotting , Proliferación Celular , Inmunoprecipitación de Cromatina , Labio Leporino/embriología , Labio Leporino/metabolismo , Fisura del Paladar/embriología , Fisura del Paladar/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Humanos , Técnicas para Inmunoenzimas , Factores Reguladores del Interferón/genética , Luciferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Morfogénesis/fisiología , Fenotipo , Fosfoproteínas/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Transactivadores/genética , Transfección , Proteínas Wnt/genética , Proteína Wnt3/genética
9.
Dev Biol ; 321(2): 500-14, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18691704

RESUMEN

The post-cranial axial skeleton consists of a metameric series of vertebral bodies and intervertebral discs, as well as adjoining ribs and sternum. Patterning of individual vertebrae and distinct regions of the vertebral column is accomplished by Polycomb and Hox proteins in the paraxial mesoderm, while their subsequent morphogenesis depends partially on Pax1/Pax9 in the sclerotome. In this study, we uncover that Pbx1/Pbx2 are co-expressed during successive stages of vertebral and rib development. Next, by exploiting a Pbx1/Pbx2 loss-of-function mouse, we show that decreasing Pbx2 dosage in the absence of Pbx1 affects axial development more severely than single loss of Pbx1. Pbx1/Pbx2 mutants exhibit a homogeneous vertebral column, with loss of vertebral identity, rudimentary ribs, and rostral hindlimb shifts. Of note, these axial defects do not arise from perturbed notochord function, as cellular proliferation, apoptosis, and expression of regulators of notochord signaling are normal in Pbx1/Pbx2 mutants. While the observed defects are consistent with loss of Pbx activity as a Hox-cofactor in the mesoderm, we additionally establish that axial skeletal patterning and hindlimb positioning are governed by Pbx1/Pbx2 through their genetic control of Polycomb and Hox expression and spatial distribution in the mesoderm, as well as of Pax1/Pax9 in the sclerotome.


Asunto(s)
Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Columna Vertebral/embriología , Factores de Transcripción/metabolismo , Animales , Bromodesoxiuridina , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Mutación/genética , Factor de Transcripción PAX9 , Factores de Transcripción Paired Box/metabolismo , Proteínas del Grupo Polycomb , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética
10.
Endocrinology ; 146(11): 4697-709, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16099856

RESUMEN

Albright hereditary osteodystrophy is caused by heterozygous inactivating mutations in GNAS, a gene that encodes not only the alpha-chain of Gs (Galphas), but also NESP55 and XLalphas through use of alternative first exons. Patients with GNAS mutations on maternally inherited alleles are resistant to multiple hormones such as PTH, TSH, LH/FSH, GHRH, and glucagon, whose receptors are coupled to Gs. This variant of Albright hereditary osteodystrophy is termed pseudohypoparathyroidism type 1a and is due to presumed tissue-specific paternal imprinting of Galphas. Previous studies have shown that mice heterozygous for a targeted disruption of exon 2 of Gnas, the murine homolog of GNAS, showed unique phenotypes dependent on the parent of origin of the mutated allele. However, hormone resistance occurred only when the disrupted gene was maternally inherited. Because disruption of exon 2 is predicted to inactivate Galphas as well as NESP55 and XLalphas, we created transgenic mice with disruption of exon 1 to investigate the effects of isolated loss of Galphas. Heterozygous mice that inherited the disruption maternally (-m/+) exhibited PTH and TSH resistance, whereas those with paternal inheritance (+/-p) had normal hormone responsiveness. Heterozygous mice were shorter and, when the disrupted allele was inherited maternally, weighed more than wild-type littermates. Galphas protein and mRNA expression was consistent with paternal imprinting in the renal cortex and thyroid, but there was no imprinting in renal medulla, heart, or adipose. These findings confirm the tissue-specific paternal imprinting of GNAS and demonstrate that Galphas deficiency alone is sufficient to account for the hormone resistance of pseudohypoparathyroidism type 1a.


Asunto(s)
Modelos Animales de Enfermedad , Exones , Displasia Fibrosa Poliostótica/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Ratones Noqueados/genética , Adenilil Ciclasas/metabolismo , Animales , Estatura , Peso Corporal , Huesos/patología , Cromograninas , Fertilidad , Displasia Fibrosa Poliostótica/metabolismo , Displasia Fibrosa Poliostótica/patología , Subunidades alfa de la Proteína de Unión al GTP Gs/deficiencia , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Impresión Genómica , Humanos , Tamaño de la Camada , Ratones , Hormona Paratiroidea/farmacología , Fenotipo , Análisis de Supervivencia , Tirotropina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA