Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 4610, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301353

RESUMEN

Discharge of pollution loads into natural water systems remains a global challenge that threatens water and food supply, as well as endangering ecosystem services. Natural rehabilitation of contaminated streams is mainly influenced by the longitudinal dispersion coefficient, or the rate of longitudinal dispersion (Dx), a key parameter with large spatiotemporal fluctuations that characterizes pollution transport. The large uncertainty in estimation of Dx in streams limits the water quality assessment in natural streams and design of water quality enhancement strategies. This study develops an artificial intelligence-based predictive model, coupling granular computing and neural network models (GrC-ANN) to provide robust estimation of Dx and its uncertainty for a range of flow-geometric conditions with high spatiotemporal variability. Uncertainty analysis of Dx estimated from the proposed GrC-ANN model was performed by alteration of the training data used to tune the model. Modified bootstrap method was employed to generate different training patterns through resampling from a global database of tracer experiments in streams with 503 datapoints. Comparison between the Dx values estimated by GrC-ANN to those determined from tracer measurements shows the appropriateness and robustness of the proposed method in determining the rate of longitudinal dispersion. The GrC-ANN model with the narrowest bandwidth of estimated uncertainty (bandwidth-factor = 0.56) that brackets the highest percentage of true Dx data (i.e., 100%) is the best model to compute Dx in streams. Considering the significant inherent uncertainty reported in the previous Dx models, the GrC-ANN model developed in this study is shown to have a robust performance for evaluating pollutant mixing (Dx) in turbulent environmental flow systems.


Asunto(s)
Contaminantes Ambientales , Ríos , Inteligencia Artificial , Ecosistema , Redes Neurales de la Computación , Incertidumbre , Calidad del Agua
2.
Water Sci Technol ; 80(10): 1880-1892, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32144220

RESUMEN

Successful application of one-dimensional advection-dispersion models in rivers depends on the accuracy of the longitudinal dispersion coefficient (LDC). In this regards, this study aims to introduce an appropriate approach to estimate LDC in natural rivers that is based on a hybrid method of granular computing (GRC) and an artificial neural network (ANN) model (GRC-ANN). Also, adaptive neuro-fuzzy inference system (ANFIS) and ANN models were developed to investigate the accuracy of three credible artificial intelligence (AI) models and the performance of these models in different LDC values. By comparing with empirical models developed in other studies, the results revealed the superior performance of GRC-ANN for LDC estimation. The sensitivity analysis of the three intelligent models developed in this study was done to determine the sensitivity of each model to its input parameters, especially the most important ones. The sensitivity analysis results showed that the W/H parameter (W: channel width; H: flow depth) has the most significant impact on the output of all three models in this research.


Asunto(s)
Inteligencia Artificial , Ríos , Lógica Difusa , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...