Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(5): 410, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564063

RESUMEN

A limited number of meteorological stations and sparse data challenge microclimate assessment in urban areas. Therefore, it is necessary to complement these data with additional measurements to achieve a denser spatial coverage, enabling a detailed representation of the city's microclimatic features. In this study, conducted in Zagreb, Croatia, mobile air temperature measurements were utilized and compared with satellite-derived land surface temperature (LST). Here, air temperature measurements were carried out using bicycles and an instrument with a GPS receiver and temperature probe during a heat wave in June 2021, capturing the spatial pattern of air temperature to highlight the city's microclimate characteristics (i.e. urban heat load; UHL) in extremely hot weather conditions. Simultaneously, remotely sensed LST was retrieved from the Landsat-8 satellite. Air temperature measurements were compared to city-specific street type classification, while neighbourhood heat load characteristics were analysed based on local climate zones (LCZ) and LST. Results indicated significant thermal differences between surface types and urban forms and between street types and LCZs. Air temperatures reached up to 35 °C, while LST exceeded 40 °C. City parks, tree-lined streets and areas near blue infrastructure were 1.5-3 °C cooler than densely built areas. Temperature contrasts between LCZs in terms of median LST were more emphasised and reached 9 °C between some classes. These findings highlight the importance of preserving green areas to reduce UHL and enhance urban resilience. Here, exemplified by the city of Zagreb, it has been demonstrated that the use of multiple datasets allows a comprehensive understanding of temperature patterns and their implications for urban climate research.


Asunto(s)
Calor , Imágenes Satelitales , Croacia , Monitoreo del Ambiente , Temperatura
2.
Int J Biometeorol ; 67(6): 1105-1123, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37140657

RESUMEN

Long- and short-term biometeorological conditions in the Republic of Serbia were analyzed using official meteorological data from numerous weather stations located across the country. Selected biometeorological indices HUMIDEX, Physiologically Equivalent Temperature (PET), and Universal Thermal Climate Index (UTCI) are calculated based on air temperature, relative humidity, wind speed, and cloudiness data from the meteorological stations on annual and summer level as well as during selected heat wave periods during 2000-2020. Application of different biometeorological indices provides similar but somewhat different results. For example, average annual HUMIDEX and UTCI values indicate no thermal stress and no discomfort at all stations, while PET indicates the occurrence of slight to moderate cold stress at all stations. Average summer PET and UTCI indicate the occurrence of slight to moderate heat stress throughout the country, while HUMIDEX indicates no discomfort. Trends of biometeorological indices on annual and summer level show a general increase throughout the country. Furthermore, heat wave analysis indicated that the most populated cities of Serbia are under dangerous and extreme heat stress during these extreme temperature events, which can influence human health and well-being. The obtained biometeorological information can be used for the preparation of climate adaptation strategies that consider the human biometeorological conditions, with a special focus on developing climate-sensitive and comfortable cities.


Asunto(s)
Trastornos de Estrés por Calor , Sensación Térmica , Humanos , Serbia/epidemiología , Clima , Temperatura , Tiempo (Meteorología) , Ciudades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA