Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(40): 53541-53554, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39344595

RESUMEN

Hydrogels have garnered tremendous attention for their applications in the repair of intervertebral disk (IVD) degeneration and postoperative IVD defects. However, it is still challenging to develop a hydrogel fulfilling the requirements for high mechanical properties, adhesive capability, biocompatibility, antibacterial properties, and anti-inflammatory performance. Herein, we report a multifunctional double-network (DN) hydrogel composed of physically cross-linked carboxymethyl chitosan (CMCS) and tannic acid (TA) networks as well as chemically cross-linked acrylamide (AM) networks, which integrates the properties of high strength, adhesion, biocompatibility, antimicrobial activity, and anti-inflammation for the repair of postoperative IVD defects. The treatment with CMCS/TA/PAM DN hydrogels can significantly decrease the levels of inflammatory cytokines and degeneration-related factors and upregulated collagen type II alpha 1. In addition, the hydrogels can effectively seal the annulus fibrosus defect, prevent nucleus pulposus degeneration, retain IVD height, and restore the biomechanical properties of the disc to some extent. This polyphenol-mediated DN hydrogel is promising for sealing IVD defects and preventing herniation after lumbar discectomy.


Asunto(s)
Antiinflamatorios , Quitosano , Hidrogeles , Degeneración del Disco Intervertebral , Hidrogeles/química , Hidrogeles/farmacología , Animales , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Degeneración del Disco Intervertebral/cirugía , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/patología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Taninos/química , Taninos/farmacología , Taninos/uso terapéutico , Polifenoles/química , Polifenoles/farmacología , Disco Intervertebral/cirugía , Disco Intervertebral/efectos de los fármacos , Disco Intervertebral/patología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Masculino
2.
J Adv Res ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103049

RESUMEN

INTRODUCTION: Osteoarthritis (OA) is a highly prevalent degenerative disease worldwide, and tumor necrosis factor (TNF-α) is closely associated with its development. Growth differentiation factor 11 (GDF11) has demonstrated anti-injury and anti-aging abilities in certain tissues; however, its regulatory role in OA remains unclear and requires further investigation. OBJECTIVES: To identify whether GDF11 can attenuate osteoarthritis. To exploring the the potential mechanism of GDF11 in alleviating osteoarthritis. METHODS: In this study, we cultured and stimulated mouse primary chondrocytes with or without TNF-α, analyzing the resulting damage phenotype through microarray analysis. Additionally, we employed GDF11 conditional knockout mice OA model to examine the relationship between GDF11 and OA. To investigate the target of GDF11's function, we utilized NLRP3 knockout mice and its inhibitor to verify the potential involvement of the NLRP3 inflammasome. RESULTS: Our in vitro experiments demonstrated that endogenous overexpression of GDF11 significantly inhibited TNF-α-induced cartilage matrix degradation and inflammatory expression in chondrocytes. Furthermore, loss of GDF11 led to NLRP3 inflammasome activation, inflammation, and metabolic dysfunction. In an in vivo surgically induced mouse model, intraarticular administration of recombinant human GDF11 alleviated OA pathogenesis, whereas GDF11 conditional knockout reversed this effect. Additionally, findings from the NLRP3-knockout DMM mouse model revealed that GDF11 exerted its protective effect by inhibiting NLRP3. CONCLUSION: These findings demonstrate the ability of GDF11 to suppress TNF-α-induced inflammation and cartilage degeneration by preventing mitochondrial dysfunction and inhibiting NLRP3 inflammasome activation, suggesting its potential as a promising therapeutic drug for osteoarthritis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...