Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioelectromagnetics ; 39(6): 428-440, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29873401

RESUMEN

Large gradient high magnetic field (LG-HMF) is a powerful tool to study the effects of altered gravity on organisms. In our study, a platform for the long-term culture of aquatic organisms was designed based on a special superconducting magnet with an LG-HMF, which can provide three apparent gravity levels (µ g, 1 g, and 2 g), along with a control condition on the ground. Planarians, Dugesia japonica, were head-amputated and cultured for 5 days in a platform for head reconstruction. After planarian head regeneration, all samples were taken out from the superconducting magnet for a behavioral test under geomagnetic field and normal gravity conditions. To analyze differences among the four groups, four aspects of the planarians were considered, including head regeneration rate, phototaxis response, locomotor velocity, and righting behavior. Data showed that there was no significant difference in the planarian head regeneration rate under simulated altered gravity. According to statistical analysis of the behavioral test, all of the groups had normal functioning of the phototaxis response, while the planarians that underwent head reconstruction under the microgravity environment had significantly slower locomotor velocity and spent more time in righting behavior. Furthermore, histological staining and immunohistochemistry results helped us reveal that the locomotor system of planarians was affected by the simulated microgravity environment. We further demonstrated that the circular muscle of the planarians was weakened (hematoxylin and eosin staining), and the epithelial cilia of the planarians were reduced (anti-acetylated tubulin staining) under the simulated microgravity environment. Bioelectromagnetics. 2018;39:428-440. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Campos Magnéticos , Planarias/fisiología , Regeneración , Animales , Organismos Acuáticos , Gravitación , Inmunohistoquímica , Movimiento , Fototaxis , Planarias/anatomía & histología , Factores de Tiempo
2.
J Mol Graph Model ; 77: 25-32, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28822273

RESUMEN

It is important to design insecticides having both low drug resistance and less undesirable toxicity for desert locust control. Specific GPCRs of Schistocerca gregaria, especially ß-adrenergic-like octopamine receptor (SgOctßR), can be considered as its potential effective insecticide targets. However, either the unavailability of SgOctßR's structure or the inadequate capability of its sequence lead the development of insecticide for Schistocerca gregaria meets its plateau. To relax this difficulty, this paper develops a promising progressive structure simulation from SgOctßR's sequence, to its predicted structure of SgOctßR in vacuum, to its conformation as well as its complex with endogenous ligand octopamine in a solvent-membrane system. The combined approach of multiple sequence alignment, static structural characterization, and dynamic process of conformational change during binding octopamine reveal three important aspects. The first one is the characterization of SgOctßR's active pocket, including the attending secondary structure elements, its hydrophobic residues and nonpolar surface. The second one is the interaction with octopamine, especially the involved hydrogen bonds and an aromatic stacking of pi-pi interactions. The third one is the potential binding sites, including six highly conserved residues and one highly variable residue for locust insecticide design. This work is definitely helpful for the further structure-based drug design for efficient and eco-friendly insecticides, as well as site-directed mutagenesis biochemical research of SgOctßR.


Asunto(s)
Adrenérgicos/química , Insecticidas/química , Octopamina/química , Receptores de Amina Biogénica/química , Animales , Sitios de Unión , Resistencia a Medicamentos/genética , Saltamontes/química , Ligandos , Mutagénesis , Octopamina/genética , Receptores de Amina Biogénica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...