Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 237: 115543, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499378

RESUMEN

DNA intercalation has increasingly been studied for various scenario implementations due to the diverse functions of DNA/intercalators. Nascent organic photoelectrochemical transistor (OPECT) biosensing taking place in organic electronics and photoelectrochemical bioanalysis represents a promising technological frontier in the arena. In this work, we first devise DNA intercalation-enabled OPECT for miRNA detection with a superior gain up to 17100. Intercalation of [Ru(bpy)2dppz]2+ within the miRNA-initiated hybrid chain reaction (HCR)-derived duplex DNA is realized for producing anodic photocurrent upon light stimulation, causing the corresponding target-dependent alternation in gate voltage (VG) and hence the modulated channel current (IDS) of poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonate) (PEDOT:PSS) under specific drain voltage (VDS) for quantitative miRNA-21 analysis, which shows a wide linear relationship and a low detection limit of 5.5 × 10-15 mol L-1. This study features the DNA intercalation-enabled organic electronics with superior gain and is envisaged to attract more attention to explore DNA adducts for innovative bioelectronics and biosensing, given the diverse DNA binders with multiple functions.


Asunto(s)
Técnicas Biosensibles , MicroARNs , ADN/análisis , Estireno , Sustancias Intercalantes
2.
Bioact Mater ; 5(4): 902-916, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32637753

RESUMEN

Biodegradable magnesium alloys are challenging to be implanted in patients with hyperglycemia and diabetes. A hypothesis is suggested that glucose accelerates microbial ingress and in vitro degradation of Mg-Li-Ca implants. Corrosion resistance and mechanical properties was demonstrated using electrochemical, hydrogen evolution and tensile tests. The bacteria from Hank's solution were isolated via 16S rRNA gene analysis. The results revealed that Mg-1Li-1Ca alloy exhibited different responses to Hank's solution with and without glucose. The solution acidity was ascribed to Microbacterium hominis and Enterobacter xiangfangensis, indicating that glucose promoted microbial activity and degradation and deterioration in mechanical property of Mg-1Li-1Ca alloy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...