Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Acta Pharm Sin B ; 14(8): 3605-3623, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220866

RESUMEN

Recent research certified that DOT1L and its mutations represented by R231Q were potential targets for the treatment of lung cancer. Herein, a series of adenosine-containing derivatives were identified with DOT1LR231Q inhibition through antiproliferation assay and Western blot analysis in the H460R231Q cell. The most promising compound 37 significantly reduced DOT1LR231Q mediated H3K79 methylation and effectively inhibited the proliferation, self-renewal, migration, and invasion of lung cancer cell lines at low micromolar concentrations. The cell permeability and cellular target engagement of 37 were verified by both CETSA and DARTS assays. In the H460R231Q OE cell-derived xenograft (CDX) model, 37 displayed pronounced tumor growth inhibition after intraperitoneal administration at 20 mg/kg dose for 3 weeks (TGI = 54.38%), without obvious toxicities. A pharmacokinetic study revealed that 37 possessed tolerable properties (t 1/2 = 1.93 ± 0.91 h, F = 97.2%) after intraperitoneal administration in rats. Mechanism study confirmed that 37 suppressed malignant phenotypes of lung cancer carrying R231Q gain-of-function mutation via the MAPK/ERK signaling pathway. Moreover, analysis of the binding modes between molecules and DOT1LWT/R231Q proteins put forward the "Induced-fit" allosteric model in favor to the discovery of potent DOT1L candidates.

2.
J Med Chem ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255403

RESUMEN

Given the considerable potential of DOT1LR231Q inhibitors in lung cancer therapy and the problematic pharmacokinetics of nucleoside inhibitors, our group launched a development program of non-nucleoside DOT1LR231Q inhibitors to improve the pharmacokinetic properties. Herein, two series of non-nucleoside compounds bearing piperidine or 3-(aminomethyl)pyrrolidin-3-ol as "ribose mimics" were designed and evaluated through antiproliferation assay and western blot analysis. The optimal TB22 inhibited the proliferation of H460R231Q cells with an IC50 value of 2.85 µM, about 13-fold more potent than SGC0946. Notably, TB22 demonstrated significant in vivo efficacy (TGI = 60.57%) in H460R231Q cell-derived xenograft models and improved pharmacokinetic properties (t1/2 = 6.06 ± 2.94 h and CL = 55.18 ± 8.56 mL/kg/min). Moreover, a mechanism study validated that TB22 suppressed malignant phenotypes of lung cancer cells harboring R231Q mutation via the MAPK/ERK signaling pathway. This work provides a promising molecule for lung cancer therapy in favor of clinical patients.

3.
Int J Ophthalmol ; 17(8): 1403-1410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156790

RESUMEN

AIM: To investigate the effects of fibrillin-1 (FBN1) deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions. METHODS: Streptozotocin (STZ)-induced diabetic mice were used to simulate the diabetic conditions of diabetic retinopathy (DR) patients, and FBN1 expression was detected in retinas from STZ-diabetic mice and controls. In the Gene Expression Omnibus (GEO) database, the GSE60436 dataset was selected to analyze FBN1 expressions in fibrovascular membranes from DR patients. Using lentivirus to knock down FBN1 levels, vascular leakage and endothelial barrier integrity were detected by Evans blue vascular permeability assay, fluorescein fundus angiography (FFA) and immunofluorescence labeled with tight junction marker in vivo. High glucose-induced monkey retinal vascular endothelial cells (RF/6A) were used to investigate effects of FBN1 on the cells in vitro. The vascular endothelial barrier integrity and apoptosis were detected by trans-endothelial electrical resistance (TEER) assay and flow cytometry, respectively. RESULTS: FBN1 mRNA expression was increased in retinas of STZ-induced diabetic mice and fibrovascular membranes of DR patients (GSE60436 datasets) using RNA-seq approach. Besides, knocking down of FBN1 by lentivirus intravitreal injection significantly inhibited the vascular leakage compared to STZ-DR group by Evans blue vascular permeability assay and FFA detection. Expressions of tight junction markers in STZ-DR mouse retinas were lower than those in the control group, and knocking down of FBN1 increased the tight junction levels. In vitro, 30 mmol/L glucose could significantly inhibit viability of RF/6A cells, and FBN1 mRNA expression was increased under 30 mmol/L glucose stimulation. Down-regulation of FBN1 reduced high glucose (HG)-stimulated retinal microvascular endothelial cell permeability, increased TEER, and inhibited RF/6A cell apoptosis in vitro. CONCLUSION: The expression level of FBN1 increases in retinas and vascular endothelial cells under diabetic conditions. Down-regulation of FBN1 protects the retina of early diabetic rats from retina-blood barrier damage, reduce vascular leakage, cell apoptosis, and maintain vascular endothelial cell barrier function.

4.
Bioresour Technol ; 409: 131267, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142417

RESUMEN

Membrane aerated biofilm reactor (MABR) is challenged by biofilm thickness control and phosphorus removal. Air scouring aided by computational fluid dynamics (CFD) was employed to detach outer biofilm in sequencing batch MABR treating low C/N wastewater. Biofilm with 177-285 µm thickness in cycle 5-15 achieved over 85 % chemical oxygen demand (COD) and total inorganic nitrogen (TIN) removals at loading rate of 13.2 gCOD/m2/d and 2.64 gNH4+-N/m2/d. Biofilm rheology measurements in cycle 10-25 showed yield stress against detachment of 2.8-7.4 Pa, which were equal to CFD calculated shear stresses under air scouring flowrate of 3-9 L/min. Air scouring reduced effluent NH4+-N by 10 % and biofilm thickness by 78 µm. Intermittent aeration (4h off, 19.5h on) and air scouring (3 L/min, 30 s before settling) in one cycle achieved COD removal over 90 %, TIN and PO43--P removals over 80 %, showing great potential for simultaneous carbon, nitrogen and phosphorus removals.


Asunto(s)
Biopelículas , Reactores Biológicos , Carbono , Hidrodinámica , Membranas Artificiales , Nitrógeno , Fósforo , Aire , Análisis de la Demanda Biológica de Oxígeno , Purificación del Agua/métodos , Simulación por Computador , Reología , Aguas Residuales/química
5.
Curr Med Chem ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39129168

RESUMEN

BACKGROUND: The inflammation phenotypes are often closely related to oxidative stress and autophagy pathway activation, which could be developed as a treatment target. AIMS: The aim of this study was to explore the underlying mechanism of inflammation in chronic obstructive pulmonary disease (COPD). METHODS: The lung tissue single-cell RNA-seq (scRNA-seq) dataset of GSE171541 was downloaded from the Gene Expression Omnibus (GEO) database. The marker genes were obtained from the CellMarker database. "Seurat" and "harmony" R packages were used for single-cell profiling analysis. Then, the "AUCell" R package was employed to calculate the reactive oxygen species (ROS) and autophagy pathway scores. Gene regulation network analysis was performed by applying the "SCENIC" package, followed by conducting correlation analysis with Spearman's rank correlation method. The cigarettes were used to develop a traumatic model in mice, and the expression of relevant genes was measured by qRT-PCR. RESULTS: The scRNA-seq analysis classified 12 cell subgroups in which the contractility of myofibroblasts was closely associated with the progression of COPD. Further analysis showed that ROS and autophagy pathways were significantly activated in myofibroblasts and that the nuclear factor erythroid 2-related factor 2 (NRF2) and its mediated oxidative stress pathway were inhibited in myofibroblasts. In addition, the downregulated NRF2 gene was negatively correlated with the expression of autophagy and ROS activation. In the traumatic mice model, NRF2 was downregulated in COPD mice but further elevated in the COPD+NRF2 mice group. Interestingly, the mRNA levels of Kelchlike ECH-associated protein 1 (Keap1), NADPH oxidase (NOX), and Cathepsin B (CTSB) were upregulated in COPD group in comparison to the control group but they were downregulated by NRF2. These results suggested that low-expressed NFR2 promoted autophagy and ROS pathway activation in myofibroblasts for COPD progression. CONCLUSION: We identified a cell myofibroblast cluster closely associated with COPD progression using the scRNA-seq analysis. The downregulated NFR2, as a key risk factor, mediated myofibroblast death by activating the oxidative stress and autophagy pathway for COPD progression.

6.
Eur J Med Chem ; 277: 116785, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39191032

RESUMEN

Tuberculosis (TB), an infectious disease induced by Mycobacterium tuberculosis, is one of the primary public health threats all over the world. Since the prevalence of first-line anti-TB agents, the morbidity and mortality issues of TB descended obviously. Nevertheless, the emergences of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains, the double prevalence of HIV-TB co-infection, and the insufficiency of plentiful health care have led to an increased incidence of TB. It is noted that current drugs for treating TB have proved unsustainable in the face of highly resistant strains. Fortunately, five categories of new drugs and candidates with new mechanisms of action have emerged in the field of anti-TB research after decades of stagnation in the progression of anti-TB drugs. In this paper, the research status of these promising anti-TB drugs and candidates are reviewed, emphasizing the challenges to be addressed for efficient development of future TB therapies.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
7.
Bioorg Chem ; 151: 107675, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126868

RESUMEN

Rho-associated coiled-coil kinase (ROCK) is involved in multiple cellular activities regulating the actin cytoskeleton, such as cell morphology, adhesion, and migration. The inhibition of ROCK is a feasible strategy to suppress breast cancer metastasis. Herein, based on Belumosudil, a series of pyrazolo[1,5-a]pyrimidine derivatives as selective ROCK2 inhibitors were designed and synthesized. Through systematic investigation of SARs, the piperazine analog 7u was identified with optimum ROCK2 inhibitory activity (IC50 = 36.8 nM) and excellent selectivity over the isoform protein ROCK1 (>250-fold). Intriguingly, upon treatment with 7u, the arrangement of the MDA-MB-231 cytoskeleton was affected accompanied by the alteration of morphology. Furthermore, cell scratch and transwell assays indicated that 7u inhibited MDA-MB-231 cell migration and invasion in a dose-dependent manner. Ultimately, the binding model of 7u with ROCK2 well accounted for the superior activities of 7u as a promising ROCK2 inhibitor with the potential application in breast cancer metastasis treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Movimiento Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas , Pirazoles , Pirimidinas , Quinasas Asociadas a rho , Humanos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo , Movimiento Celular/efectos de los fármacos , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Femenino , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular
8.
Bioorg Med Chem Lett ; 109: 129838, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838918

RESUMEN

Aberrant activation of the JAK-STAT pathway is evident in various human diseases including cancers. Proteolysis targeting chimeras (PROTACs) provide an attractive strategy for developing novel JAK-targeting drugs. Herein, a series of CRBN-directed JAK-targeting PROTACs were designed and synthesized utilizing a JAK1/JAK2 dual inhibitor-momelotinib as the warhead. The most promising compound 10c exhibited both good enzymatic potency and cellular antiproliferative effects. Western blot analysis revealed that compound 10c effectively and selectively degraded JAK1 in a proteasome-dependent manner (DC50 = 214 nM). Moreover, PROTAC 10c significantly suppressed JAK1 and its key downstream signaling. Together, compound 10c may serve as a novel lead compound for antitumor drug discovery.


Asunto(s)
Antineoplásicos , Proliferación Celular , Janus Quinasa 1 , Proteolisis , Humanos , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proteolisis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Descubrimiento de Drogas , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Dosis-Respuesta a Droga , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
9.
Nat Commun ; 15(1): 3177, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609361

RESUMEN

Elemental Te is important for semiconductor applications including thermoelectric energy conversion. Introducing dopants such as As, Sb, and Bi has been proven critical for improving its thermoelectric performance. However, the remarkably low solubility of these elements in Te raises questions about the mechanism with which these dopants can improve the thermoelectric properties. Indeed, these dopants overwhelmingly form precipitates rather than dissolve in the Te lattice. To distinguish the role of doping and precipitation on the properties, we have developed a correlative method to locally determine the structure-property relationship for an individual matrix or precipitate. We reveal that the conspicuous enhancement of electrical conductivity and power factor of bulk Te stems from the dopant-induced metavalently bonded telluride precipitates. These precipitates form electrically beneficial interfaces with the Te matrix. A quantum-mechanical-derived map uncovers more candidates for advancing Te thermoelectrics. This unconventional doping scenario adds another recipe to the design options for thermoelectrics and opens interesting pathways for microstructure design.

10.
Ecol Evol ; 14(2): e10869, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38322002

RESUMEN

Against the backdrop of global warming, marine heatwaves are projected to become increasingly intense and frequent. This trend poses a potential threat to the survival of corals and the maintenance of entire coral reef ecosystems. Despite extensive evidence for the resilience of corals to heat stress, their ability to withstand repeated heatwave events has not been determined. In this study, we examined the responses and resilience of Turbinaria peltata to repeated exposure to marine heatwaves, with a focus on physiological parameters and symbiotic microorganisms. In the first heatwave, from a physiological perspective, T. peltata showed decreases in the Chl a content and endosymbiont density and significant increases in GST, caspase-3, CAT, and SOD levels (p < .05), while the effects of repeated exposure on heatwaves were weaker than those of the initial exposure. In terms of bacteria, the abundance of Leptospira, with the potential for pathogenicity and intracellular parasitism, increased significantly during the initial exposure. Beneficial bacteria, such as Achromobacter arsenitoxydans and Halomonas desiderata increased significantly during re-exposure to the heatwave. Overall, these results indicate that T. peltata might adapt to marine heatwaves through physiological regulation and microbial community alterations.

11.
Microbiol Spectr ; 12(2): e0029523, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38193720

RESUMEN

Staphylococcus aureus, a representative gram-positive bacterium, is a common infectious pathogen widely present in the natural environment. The increasing application of antibiotics is witnessing an increment in the number of clinically resistant strains (such as methicillin-resistant S. aureus [MRSA]), which has posed a great challenge to antimicrobial therapy. In this study, a novel MRSA phage, SauPS-28, was isolated from the lake water of the Guangxi Zhuang Autonomous Region. This phage has an incubation period of approximately 30 min, a lysis period of approximately 40 min, and a burst size of approximately 25 PFU/cell. The isolated phage exhibited good biological stability at a pH range of 6.0-9.0 and temperature range of 4°C-37°C. In addition, the identification of an elongated tail using transmission electron microscopy confirmed that SauPS-28 belongs to the long-tailed phage family. Whole-genome sequencing analysis revealed that SauPS-28 has a 43,286-bp-long genome with 31.03% G + C content. Moreover, SauPS-28 exhibited 95.69% sequence identity with ECel-2020k, while the query coverage was only 66%, which is a newly discovered phage. Whole-genome functional annotation results revealed that SauPS-28 had 68 open reading frames (ORFs). Of these, 30 ORFs are unknown proteins. The results suggest that SauPS-28 could be a lysogenic phage strain. This study thus provides preliminary data to conduct further in-depth analysis of the mechanism of phage-host interaction and provides a reference value for phage therapy.IMPORTANCEIn recent years, drug-resistant bacterial infections have become increasingly serious. As a kind of virus with the ability to infect and lyse drug-resistant bacteria, phage is expected to be a new therapeutic method. In this study, we isolated and purified a new methicillin-resistant Staphylococcus aureus bacteriophage SauPS-28, studied a series of biological characteristics of the bacteriophage, analyzed the genome and structural proteome data of the bacteriophage, and provided reference data for further study of the interaction mechanism between bacteriophage and host bacteria and promoted new antibacterial strategies.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Bacteriófagos/genética , China , Staphylococcus aureus/genética , Genómica , Genoma Viral , Antibacterianos
12.
Arch Pharm (Weinheim) ; 357(4): e2300591, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185750

RESUMEN

In a continuous effort to develop Janus kinase 1 (JAK1)-selective inhibitors, a novel series of 4-amino-7H-pyrrolo[2,3-d]pyrimidine derivatives bearing the piperidinyl fragment were designed and synthesized according to a combination strategy. Through enzymatic assessments, the superior compound 12a with an IC50 value of 12.6 nM against JAK1 was identified and a 10.7-fold selectivity index over JAK2 was achieved. It was indicated that 12a displayed considerable effect in inhibiting the pro-inflammatory NO generated from lipopolysaccharide (LPS)-induced RAW264.7 macrophages, while on normal RAW264.7 cells, 12a exerted a weak cytotoxicity effect (IC50 = 143.3 µM). Furthermore, H&E stain assay demonstrated the conspicuous capacity of 12a to suppress CCl4-induced hepatic fibrosis levels in a dose-dependent manner in vivo. The binding model of 12a ideally reflects the excellent activity of JAK1 over the homologous kinase JAK2. Overall, 12a, a JAK1-selective inhibitor, exhibited potential for liver fibrosis and inflammatory diseases.


Asunto(s)
Inhibidores de Proteínas Quinasas , Pirimidinas , Relación Estructura-Actividad , Pirimidinas/farmacología , Pirimidinas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
13.
J Ginseng Res ; 47(6): 755-765, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38107394

RESUMEN

Background: Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca2+ influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca2+ ([Ca2+]i) accumulation in cardiomyocytes. The purified extract of steamed Panax ginseng (EPG) attenuated [Ca2+]i overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca2+]i against MI injury in neonatal rat cardiomyocytes and a rat model. Methods: PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca2+]i concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured. Results: EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca2+ influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE via increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG. Conclusions: Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury via increasing p-caveolin-1 to negatively regulate SOCE/[Ca2+]i.

14.
J Laparoendosc Adv Surg Tech A ; 33(12): 1189-1192, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37943611

RESUMEN

Introduction: Reported results and techniques of laparoscopic sleeve gastrectomy (LSG) are variable. Our objective was to assess results of weight loss, complications, and reflux in a large consecutive series of LSG, describing technical detail which contributed to outcomes. Methods: Retrospective review of prospectively collected data of 500 consecutive patients undergoing LSG. Patient demographics, weight loss, complications, and functional outcomes were analyzed and operative technique described. Results: Five hundred patients underwent LSG over 3 years (2 revisional). Mean (range) preoperative body mass index was 40 kg/m2 (32-75 kg/m2). Mean follow-up and length of hospital stay were 12 months (1-36) and 7.2 days (5-12), respectively. All-cause 30-day readmission rate was 0.3%. Mean excess weight loss was 22.3% (1 month), 42.2% (3 month), 57.2% (6 month), and 73.1% (1 year). There was no mortality and intraoperative complications occurred in our 500 cases. Early surgical complications in 2 (0.2%) patients (postoperative bleeds). Gastro-oesophageal reflux symptoms decreased about 10%. Conclusion: With attention to detail, LSG can lead to good excess weight loss with minimal complications. Tenants to success include repair of hiatal laxity, generous width at angula incisura, and complete resection of posterior fundus.


Asunto(s)
Gastroplastia , Laparoscopía , Obesidad Mórbida , Humanos , Obesidad Mórbida/cirugía , Obesidad Mórbida/complicaciones , Gastroplastia/métodos , Resultado del Tratamiento , Laparoscopía/métodos , Reoperación/métodos , Gastrectomía/métodos , Estudios Retrospectivos , Pérdida de Peso , Índice de Masa Corporal , Complicaciones Posoperatorias/etiología
15.
Anal Bioanal Chem ; 415(27): 6825-6838, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37848578

RESUMEN

This work aims to rapidly detect toxic alkaloids in traditional Chinese medicines (TCM) using laser desorption ionization mass spectrometry (LDI-MS). We systematically investigated twelve nanomaterials (NMs) as matrices and found that MoS2 and defect-rich-WO3 (D-WO3) were the best NMs for alkaloid detection. MoS2 and D-WO3 can be used directly as matrices dipped onto conventional ground steel target plates. Additionally, they can be conveniently fabricated as three-dimensional (3D) NM plates, where the MoS2 or D-WO3 NM is doped into resin and formed using a 3D printing process. We obtained good quantification of alkaloids using a chemothermal compound as an internal standard and detected related alkaloids in TCM extracts, Fuzi (Aconiti Lateralis Radix Praeparata), Caowu (Aconiti Kusnezoffii Radix), Chuanwu (Aconiti Radix), and Houpo (Magnoliae Officinalis Cortex). The work enabled the advantageous "dip and measure" method, demonstrating a simple and fast LDI-MS approach that achieves clean backgrounds for alkaloid detection. The 3D NM plates also facilitated mass spectrometry imaging of alkaloids in TCMs. This method has potential practical applications in medicine and food safety. Doped nanomaterial facilitates 3D printing target plate for rapid detection of alkaloids in laser desorption/ionization mass spectrometry.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Molibdeno , Cromatografía Líquida de Alta Presión/métodos , Alcaloides/análisis , Espectrometría de Masas/métodos , Medicamentos Herbarios Chinos/química , Medicina Tradicional China , Aconitum/química
16.
Eur J Hosp Pharm ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758318

RESUMEN

OBJECTIVE: This study aimed to assess the effectiveness of a low trough serum concentration of vancomycin on acute kidney injury in infants and toddlers in the paediatric intensive care unit (PICU). METHODS: A retrospective cohort study was performed of 126 infants and toddlers (aged between 29 days and 3 years) from the PICU of a tertiary care hospital who were administered intravenous vancomycin between January 2019 and December 2022. Information about their demographic factors, duration of PICU stay, time of administration and trough levels of vancomycin were retrieved. Descriptive statistics were used for demographic factors and multivariable logistic regression analyses were conducted to assess the determining factors. RESULTS: Based on the trough concentration of vancomycin, the participants were divided into three groups as follows: 4-5 mg/L, 5-15 mg/L and >15 mg/L. The serum vancomycin concentration was significantly related to body weight, albumin, cystatin C, urea nitrogen in serum, serum creatinine and creatinine clearance (p<0.05) in these patients. Multivariate analysis showed that body weight, albumin, cystatin C, urea nitrogen in serum and creatinine clearance were independent contributors to the trough vancomycin concentration. There was no difference in the effectiveness of different trough concentrations on patients (p=0.241). The cumulative incidence of acute kidney injury was highest in the group with a trough concentration of vancomycin >15 mg/L (p<0.01). CONCLUSIONS: Patients with a vancomycin trough concentration of 4-5 mg/L in the PICU had a high cure rate (79.4%) and a low incidence of acute kidney injury (HR 18.3, 95% CI 5.135 to 87.621; p<0.001). Therefore, the serum trough concentration should be considered but it should also be combined with the treatment effect to achieve individualised administration for the clinical application of vancomycin.

17.
Arch Pharm (Weinheim) ; 356(12): e2300416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37737557

RESUMEN

In light of the cocrystal structure of ceritinib with anaplastic lymphoma kinase (ALK)WT protein, a series of novel 2,4-diarylaminopyrimidine analogs (L1-L25) bearing a typical piperidinyl-4-ol moiety were designed and synthesized with improved biological and physicochemical properties. Satisfyingly, most compounds demonstrated moderate to excellent antitumor effects with IC50 values below 5 µM on ALK-positive Karpas299 and H2228 cells. In particular, L6 bearing the 1-(6-methoxy-pyridin-2-yl)-4-(morpholinomethyl)piperidinyl-4-ol moiety was detected as the optimal compound against ALK-dependent cell lines of Karpas299 (0.017 µM) and H2228 cells (0.052 µM), in company with encouraging ALK enzyme inhibition (ALKWT , IC50 = 1.8 nM). In addition, L6 was also capable of inhibiting ALK-resistant mutations, including ALKL1196M (3.9 nM) and ALKG1202R (5.2 nM). Remarkably, L6 typically repressed colony formation and migration of H2228 cells in a dose-dependent manner. Meanwhile, acridine orange-ethidium bromide staining analysis indicated that the proapoptotic effect of L6 was better than that of ceritinib at the same concentration (50 nM). Ultimately, the binding patterns of L6 to ALKWT and ALKG1202R were ideally established, which further confirmed the structural basis in accordance with the structure-activity relationship analysis.


Asunto(s)
Antineoplásicos , Pirimidinas , Relación Estructura-Actividad , Proliferación Celular , Pirimidinas/farmacología , Pirimidinas/química , Sulfonas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Mutación , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química
18.
Langmuir ; 39(33): 11520-11528, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37561397

RESUMEN

The capillary force is critical to the moving and breaking of droplets on fibers. This study brings forward a 3-D model reconstruction method for a clam-shell droplet on fibers and obtains the capillary force by the surface integral of Laplace pressure on the whole droplet. The capillary force results are verified by the droplet gravity and axial drag force, respectively. Moreover, the tensile tangential stresses are analyzed to illustrate the top limits of Laplace pressure against droplet breaking or sliding on the fiber. The experiment shows that the capillary force obtained by the 3-D model accurately describes the vertical and tangential forces of the clam-shell droplet on the fiber. Sharp shrinking of the cross-section on the droplet's upper part results in an exponential increase in tensile and tangential stresses, which makes the droplet break or move on the fiber.

19.
Nanoscale ; 15(25): 10606-10613, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37309836

RESUMEN

Optical limiters are greatly needed to protect eyes and sensitive optoelectronic devices such as photodetectors and sensors from laser damage, but they are currently plagued by low efficiency. In this work, we utilized Cu3VSe4 nanocrystals (NCs) to enhance laser protection performance, and they exhibit higher saturation intensity and broader nonlinear spectral response extending into the near IR region than the C60 benchmark. A flexible optical limiter goggle prototype based on the NCs significantly attenuated the incident laser beam, with Z scan and I scan measurements demonstrating a giant nonlinear absorption coefficient ß value of 1.0 × 10-7 m W-1, a large optical damage threshold of 3.5 J cm-2, and a small starting threshold of 0.22 J cm-2. Transient absorption spectroscopy disclosed that the origin of the excellent nonlinearity was associated with quasi-static dielectric resonance behavior and a large TPA cross-section of 3.3 × 106 GM was measured for Cu3VSe4 NCs, suggesting the potential of intermediate bandgap (IB) semiconductors as alternatives to plasmonic noble metals for ultrafast photonics. Hence, optical limiters based on such semiconductors offer new avenues for laser protection in optoelectronic and defense fields.


Asunto(s)
Luz , Nanopartículas , Óptica y Fotónica , Rayos Láser , Nanopartículas/química
20.
Expert Opin Ther Pat ; 33(4): 323-337, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37208827

RESUMEN

INTRODUCTION: Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, has emerged as a promising drug target for multiple cancers. Up to now, a total of seven ALK inhibitors have been approved for clinical cancer treatment. However, the issue of resistance to ALK inhibitors was subsequently reported, which led to the exploration of novel generations of ALK inhibitors recently. AREAS COVERED: This paper provides a comprehensive review of the patent literature from 2018 to 2022 about structures, pharmacological data of small molecular ALK inhibitors, and their utilization as anticancer agents. In addition, several potential ALK inhibitors on the market or under clinical investigations are described in detail. EXPERT OPINION: To date, there are no ALK inhibitors that have been approved are completely free of resistance issues, which is a plight needing urgent solution. Development of new ALK inhibitors through structure modification, multi-targeted inhibitors, type-I½ and type-II binding modes, as well as PROTAC and drug conjugates are proceeding. Over the last 5 years, lorlatinib, entrectinib, and ensartinib have been approved, and an increasing number of studies on ALK inhibitors, especially on macrocyclic compounds, have demonstrated their promising therapeutic potency.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Quinasa de Linfoma Anaplásico , Neoplasias Pulmonares/patología , Patentes como Asunto , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...