Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biol Drug Des ; 91(2): 552-566, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29034580

RESUMEN

Transient receptor potential melastatin-2 (TRPM2) channel critical for monitoring internal body temperature is implicated in the pathological processes such as neurodegeneration. However, lacking selective and potent TRPM2 inhibitors impedes investigation and validation of the channel as a drug target. To discover novel and selective TRPM2 inhibitors, a series of adenosine 5'-diphosphoribose analogues were synthesized, and their activities and selectivity were evaluated. Whole-cell patch-clamp recordings were employed for screen and evaluation of synthesized compounds. Two compounds, 7i and 8a, were identified as TRPM2 inhibitors with IC50 of 5.7 and 5.4 µm, respectively. Both 7i and 8a inhibited TRPM2 current without affecting TRPM7, TRPM8, TRPV1 and TRPV3. These two TRPM2 inhibitors can serve as new pharmacological tools for further investigation and validation of TRPM2 channel as a drug target, and the summarized structure-activity relationship (SAR) may also provide insights into further improving existing inhibitors as potential lead compounds.


Asunto(s)
Adenosina Difosfato Ribosa/análogos & derivados , Canales Catiónicos TRPM/metabolismo , Adenosina Difosfato Ribosa/síntesis química , Adenosina Difosfato Ribosa/metabolismo , Calcio/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Técnicas de Placa-Clamp , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética
2.
Antioxid Redox Signal ; 27(16): 1297-1316, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28292196

RESUMEN

AIMS: Dysfunction of neurovascular pericytes underlies breakdown of the blood-brain barrier, but the molecular mechanisms are largely unknown. In this study, we evaluated the role of the transient receptor potential melastatin-related 2 (TRPM2) channel and autophagy during brain pericyte injury both in vitro and in vivo. RESULTS: A rapid induction in autophagy in human brain vascular pericytes, in the zinc oxide nanoparticles (ZnO-NP)-induced cell stress model, was paralleled with an increase in the expression of the TRPM2-S truncated isoform, which was abolished by treatment with a nitric oxide synthase inhibitor and a peroxynitrite scavenger. Furthermore, Y1485 in the C-terminus of the TRPM2 protein was identified as the tyrosine nitration substrate by mass spectrometry. Overexpression of the Y1485S TRPM2 mutant reduced LC3-II accumulation and pericyte injury induced by ZnO-NP. Consistently, LC3-II accumulation was reduced and pericytes were better preserved in intact brain microvessels of the TRPM2 knockout mice after ZnO-NP-induced vascular injury. Innovation and Conclusions: Our present study has revealed a novel mechanism of autophagy disturbance secondary to nitrosative stress-induced tyrosine nitration of TRPM2 during pericyte injury. Antioxid. Redox Signal. 27, 1297-1316.


Asunto(s)
Lesiones Encefálicas/metabolismo , Estrés Nitrosativo , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/metabolismo , Tirosina/química , Óxido de Zinc/efectos adversos , Animales , Autofagia , Barrera Hematoencefálica , Lesiones Encefálicas/genética , Células Cultivadas , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Nanopartículas/química , Pericitos , Canales Catiónicos TRPM/genética
3.
Acta Pharmacol Sin ; 37(1): 4-12, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26725732

RESUMEN

Ischemia/reperfusion (I/R) injury is the main cause of tissue damage and dysfunction. I/R injury is characterized by Ca(2+) overload and production of reactive oxygen species (ROS), which play critical roles in the process of I/R injury to the brain, heart and kidney, but the underlying mechanisms are largely elusive. Recent evidence demonstrates that TRPM2, a Ca(2+)-permeable cationic channel and ROS sensor, is involved in I/R injury, but whether TRPM2 plays a protective or detrimental role in this process remains controversial. In this review, we discuss the recent progress in understanding the role of TRPM2 in reperfusion process after brain, heart and kidney ischemia and the potential of targeting TRPM2 for the development of therapeutic drugs to treat I/R injury.


Asunto(s)
Daño por Reperfusión/metabolismo , Canales Catiónicos TRPM/fisiología , Animales , Isquemia Encefálica/metabolismo , Humanos , Riñón/irrigación sanguínea , Daño por Reperfusión Miocárdica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...