Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Sci ; 113(9): 2974-2985, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35722994

RESUMEN

Lactate accumulation in the tumor microenvironment was shown to be closely related to tumor growth and immune escape, and suppression of lactate production by inhibiting lactate dehydrogenase A (LDHA) has been pursued as a potential novel antitumor strategy. However, only a few potent LDHA inhibitors have been developed and most of them did not show potent antitumor effects in vivo. To this end, we designed new LDHA inhibitors and obtained a novel potent LDHA inhibitor, ML-05. ML-05 inhibited cellular lactate production and tumor cell proliferation, which was associated with inhibition of ATP production and induction of reactive oxygen species and G1 phase arrest. In a mouse B16F10 melanoma model, intratumoral injection of ML-05 significantly reduced lactate production, inhibited tumor growth, and released antitumor immune response of T cell subsets (Th1 and GMZB+ CD8 T cells) in the tumor microenvironment. Moreover, ML-05 treatment combined with programmed cell death-1 Ab or stimulator of interferon genes protein (STING) could sensitize the antitumor activity in B16F10 melanoma model. Collectively, we developed a novel potent LDHA inhibitor, ML-05, that elicited profound antitumor activity when injected locally, and was associated with the activation of antitumor immunity. In addition, ML-05 could sensitize immunotherapies, which suggests great translational value.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , L-Lactato Deshidrogenasa , Melanoma , Animales , Línea Celular Tumoral , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Lactatos , Melanoma/patología , Ratones , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...