Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771927

RESUMEN

Autotrophic denitrification utilizing iron sulfides as electron donors has been well studied, but the occurrence and mechanism of abiotic nitrate (NO3-) chemodenitrification by iron sulfides have not yet been thoroughly investigated. In this study, NO3- chemodenitrification by three types of iron sulfides (FeS, FeS2, and pyrrhotite) at pH 6.37 and ambient temperature of 30 °C was investigated. FeS chemically reduced NO3- to ammonium (NH4+), with a high reduction efficiency of 97.5% and NH4+ formation selectivity of 82.6%, but FeS2 and pyrrhotite did not reduce NO3- abiotically. Electrochemical Tafel characterization confirmed that the electron release rate from FeS was higher than that from FeS2 and pyrrhotite. Quenching experiments and density functional theory calculations further elucidated the heterogeneous chemodenitrification mechanism of NO3- by FeS. Fe(II) on the FeS surface was the primary site for NO3- reduction. FeS possessing sulfur vacancies can selectively adsorb oxygen atoms from NO3- and water molecules and promote water dissociation to form adsorbed hydrogen, thereby forming NH4+. Collectively, these findings suggest that the NO3- chemodenitrification by iron sulfides cannot be ignored, which has great implications for the nitrogen, sulfur, and iron cycles in soil and water ecosystems.

2.
Bioresour Technol ; 402: 130770, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697366

RESUMEN

Ammonia inhibition is a common issue encountered in anaerobic digestion (AD) when treating nitrogen-rich substrates. This study proposed a novel approach, the electrodialysis-integrated AD (ADED) system, for in-situ recovery of ammonium (NH4+) while simultaneously enhancing AD performance. The ADED reactor was operated at two different NH4+-N concentrations (5,000 mg/L and 10,000 mg/L) to evaluate its performance against a conventional AD reactor. The results indicate that the ADED technology effectively reduced the NH4+-N concentration to below 2,000 mg/L, achieving this with a competitive energy consumption. Moreover, the ADED reactor demonstrated a 1.43-fold improvement in methane production when the influent NH4+-N was 5,000 mg/L, and it effectively prevented complete inhibition of methane production at the influent NH4+-N of 10,000 mg/L. The life cycle impact assessment reveals that ADED technology offers a more environmentally friendly alternative by recovering valuable fertilizer from the AD system.

3.
Environ Sci Technol ; 58(8): 3654-3664, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38318812

RESUMEN

How the plastisphere mediated by the residual microplastic film in farmlands affects microhabitat systems is unclear. Here, microbial structure, assembly, and biogeochemical cycling in the plastisphere and soil in 33 typical farmland sites were analyzed by amplicon sequencing of 16S rRNA genes and ITS and metagenome analysis. The results indicated that residual microplastic film was colonized by microbes, forming a unique niche called the plastisphere. Notable differences in the microbial community structure and function were observed between soil and plastisphere. Residual microplastic film altered the microbial symbiosis and assembly processes. Stochastic processes significantly dominated the assembly of the bacterial community in the plastisphere and soil but only in the plastisphere for the fungal community. Deterministic processes significantly dominated the assembly of fungal communities only in soil. Moreover, the plastisphere mediated by the residual microplastic film acted as a preferred vector for pathogens and microorganisms associated with plastic degradation and the nitrogen and sulfur cycle. The abundance of genes associated with denitrification and sulfate reduction activity in the plastisphere was pronouncedly higher than that of soil, which increase the potential risk of nitrogen and sulfur loss. The results will offer a scientific understanding of the harm caused by the residual microplastic film in farmlands.


Asunto(s)
Microbiota , Microplásticos , Granjas , Plásticos , ARN Ribosómico 16S/genética , Nitrógeno , Suelo , Azufre
4.
Environ Res ; 241: 117607, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939810

RESUMEN

Anaerobic ethanol oxidation relies on syntrophic interactions among functional microorganisms to become thermodynamically feasible. Different operational modes (sequencing batch reactors, SBRs, and continuous flow reactors, CFRs) and solids retention times (SRT, 25 days and 10 days) were employed in four ethanol-fed reactors, named as SBR25d, SBR10d, CFR25d, and CFR10d, respectively. System performance, syntrophic relationships, microbial communities, and metabolic pathways were examined. During the long-term operation, 2002.7 ± 56.0 mg COD/L acetate was accumulated in CFR10d due to the washout of acetotrophic methanogens. Microorganisms with high half-saturation constants were enriched in reactors of 25-day SRT. Moreover, ethanol oxidizing bacteria and acetotrophic methanogens with high half-saturation constants could be acclimated in SBRs. In SBRs, Syner-01 and Methanothrix dominated, and the low SRT of 10 days increased the relative abundance of Geobacter to 38.0%. In CFRs, the low SRT of 10 days resulted in an increase of Desulfovibrio among syntrophic bacteria, and CFR10d could be employed in enriching hydrogenotrophic methanogens like Methanobrevibacter.


Asunto(s)
Acetatos , Bacterias , Bacterias/metabolismo , Anaerobiosis , Acetatos/metabolismo , Etanol , Reactores Biológicos , Metano
5.
Water Res ; 249: 120896, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38006787

RESUMEN

Efficient anaerobic digestion requires the syntrophic cooperation among diverse microorganisms with various metabolic pathways. In this study, two operational modes, i.e., the sequencing batch reactor (SBR) and the continuous-flow reactor (CFR), were adopted in ethanol-fed systems with or without the supplement of powdered activated carbon (PAC) to examine their effects on ethanol metabolic pathways. Notably, the operational mode of SBR and the presence of CO2 facilitated ethanol metabolism towards propionate production. This was further evidenced by the dominance of Desulfobulbus, and the increased relative abundances of enzymes (EC: 1.2.7.1 and 1.2.7.11) involved in CO2 metabolism in SBRs. Moreover, SBRs exhibited superior biomass-based rates of ethanol degradation and methanogenesis, surpassing those in CFRs by 53.1% and 22.3%, respectively. Remarkably, CFRs with the extended solids retention time enriched high relative abundances of Geobacter of 71.7% and 70.4% under conditions with and without the addition of PAC, respectively. Although both long-term and short-term PAC additions led to the increased sludge conductivity and a reduced methanogenic lag phase, only the long-term PAC addition resulted in enhanced rates of ethanol degradation and propionate production/degradation. The strategies by adjusting operational mode and PAC addition could be adopted for modulating the anaerobic ethanol metabolic pathway and enriching Geobacter.


Asunto(s)
Etanol , Propionatos , Anaerobiosis , Dióxido de Carbono , Carbón Orgánico , Redes y Vías Metabólicas , Reactores Biológicos , Metano/metabolismo , Aguas del Alcantarillado
6.
Sci Total Environ ; 901: 165908, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37543327

RESUMEN

Iron sulfides-based autotrophic denitrification (IAD) is effective for treating nitrate-contaminated wastewater. However, the complex nitrate transformation pathways coupled with sulfur and iron cycles in IADs are still unclear. In this study, two columns (abiotic vs biotic) with iron sulfides (FeS) as the packing materials were constructed and operated continuously. In the abiotic column, FeS chemically reduced nitrate to ammonium under the ambient condition; this chemical reduction reaction pathway was spontaneous and has been overlooked in IAD reactors. In the biotic column (IAD biofilter), the complex nitrogen-transformation network was composed of chemical reduction, autotrophic denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and sulfate reducing ammonium oxidation (Sulfammox). Metagenomic analysis and XPS characterization of the IAD biofilter further validated the roles of functional microbial communities (e.g., Acidovorax, Diaphorobacter, Desulfuromonas) in nitrate reduction process coupled with iron and sulfur cycles. This study gives an in-depth insight into the nitrogen transformations in IAD system and provides fundamental evidence about the underlying microbial mechanism for its further application in biological nitrogen removal.

7.
J Hazard Mater ; 459: 132235, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37562349

RESUMEN

Struvite recovered from wastewater contains high concentration of fecal indicator bacteria (FIB), porcine adenoviruses (PAdV) and antibiotic resistance genes (ARGs), becoming potential resources of these microbial hazards. Understanding the precipitation behavior of pathogenic indicators and ARGs with suspended solids (SS) will provide the possible strategy for the control of co-precipitation. In this study, SS was divided into high-density SS (separated by centrifugation) and low-density SS (further separated by filtration), and the role of SS on the co-precipitation of FIB, PAdV and ARGs was investigated. The distribution analysis showed that 35.5-73.0% FIB, 79.6% PAdV and 64.5-94.8% ARGs existed in high-density SS, while the corresponding values were 26.9-64.4%, 11.7% and 3.5-24.3% in low-density SS. During struvite generation, 82.7-96.9% FIB, 75.5% PAdV and 56.3-86.5% ARGs were co-precipitated into struvite. High-density SS contributed 20.7-68.5% FIB, 63.9% PAdV and 38.7-87.2% ARGs co-precipitation, and the corresponding contribution of low-density SS was 31.4-79.2%, 3.9% and 6.2-54.7%. Moreover, the precipitated SS in struvite obviously decreased inactivation efficiency of FIB and ARGs in drying process. These results provide a potential way to control the co-precipitation and inactivation of FIB, PAdV and ARGs in struvite through removing high-density SS prior to struvite recovery.


Asunto(s)
Fosfatos , Aguas Residuales , Porcinos , Animales , Estruvita , Fosfatos/análisis , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Genes Bacterianos
8.
Environ Sci Technol ; 57(30): 10919-10928, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37475130

RESUMEN

Artificial sweeteners have been frequently detected in the feedstocks of anaerobic digestion. As these sweeteners can lead to the shift of anaerobic microbiota in the gut similar to that caused by antibiotics, we hypothesize that they may have an antibiotic-like impact on antibiotic resistance genes (ARGs) in anaerobic digestion. However, current understanding on this topic is scarce. This investigation aimed to examine the potential impact of acesulfame, a typical artificial sweetener, on ARGs in anaerobic digestion by using metagenomics sequencing and qPCR. It was found that acesulfame increased the number of detected ARG classes and the abundance of ARGs during anaerobic digestion. The abundance of typical mobile genetic elements (MGEs) and the number of potential hosts of ARGs also increased under acesulfame exposure, suggesting the enhanced potential of horizontal gene transfer of ARGs, which was further confirmed by the correlation analysis between absolute abundances of the targeted ARGs and MGEs. The increased horizontal dissemination of ARGs may be associated with the SOS response induced by the increased ROS production, and the increased cellular membrane permeability. These findings indicate that artificial sweeteners may accelerate ARG spread through digestate disposal, thus corresponding strategies should be considered to prevent potential risks in practice.


Asunto(s)
Antibacterianos , Microbioma Gastrointestinal , Edulcorantes , Edulcorantes/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Anaerobiosis/efectos de los fármacos , Genes Bacterianos , Microbioma Gastrointestinal/efectos de los fármacos , Antibacterianos/farmacología
9.
Bioresour Technol ; 384: 129356, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37336445

RESUMEN

Composting experiment of swine manure, adding with yellow phosphorus slag(YPS) at 5% (w/w), was conducted in an industrial-scale reactor covered with semi-permeable membrane. During 27 days of composting, the changes in temperature, compost quality and phosphorus(P) speciation of products were monitored. Results indicated that the temperature of compost pile was sharply increased on day 2, and the thermophilic period lasted for 15 days. The dynamics in germination index(GI), pH, nutrient contents, etc. of products were in line with conventional composting process. For P distribution, the contents of total-P and citric acid extracted-P(CAP) of products were increased during composting, while that of Olsen-P was decreased. HCl extracted inorganic P(HCl-Pi), a slowly release fraction of P, was dominated in the product, which showed an increasing trend during the composting. These results suggest that the industrial-scale composting with novel YPS additive can be accomplished, and its product contains abundant slowly released P.


Asunto(s)
Compostaje , Suelo , Animales , Porcinos , Suelo/química , Estiércol , Fósforo , Temperatura
10.
J Hazard Mater ; 455: 131633, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196443

RESUMEN

Struvite production can recover ammonia and phosphorous from digested wastewater as fertilizer. During struvite generation, most of the heavy metals was co-precipitated with ammonia and phosphorous into struvite. Understanding the precipitation behavior of heavy metals with suspended solids (SS) might provide the possible strategy for the control of co-precipitation. In this study, the distribution of heavy metals in SS and their role on the co-precipitation during struvite recovery from digested swine wastewater were investigated. The results showed that the concentration of heavy metal (including Mn, Zn, Cu, Ni, Cr, Pb and As) ranged from 0.05 to 17.05 mg/L in the digested swine wastewater. The distribution analysis showed that SS with particles > 50 µm harbored most of individual heavy metal (41.3-55.6%), followed by particles 0.45-50 µm (20.9-43.3%), and SS-removed filtrate (5.2-32.9%). During struvite generation, 56.9-80.3% of individual heavy metal was co-precipitated into struvite. The contributions of SS with particles > 50 µm, 0.45-50 µm, and SS-removed filtrate on the individual heavy metal co-precipitation were 40.9-64.3%, 25.3-48.3% and 1.9-22.9%, respectively. These finding provides potential way for controlling the co-precipitation of heavy metals in struvite.


Asunto(s)
Metales Pesados , Aguas Residuales , Animales , Porcinos , Estruvita , Eliminación de Residuos Líquidos/métodos , Amoníaco/análisis , Metales Pesados/análisis , Fósforo , Fosfatos/análisis
11.
Water Res ; 231: 119619, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689879

RESUMEN

Iron sulfides-based autotrophic denitrification (IAD) is a promising technology for nitrate and phosphate removal from low C:N ratio wastewater due to its cost-effectiveness and low sludge production. However, the slow kinetics of IAD, compared to other sulfur-based autotrophic denitrification (SAD) processes, limits its engineering application. This study constructed a co-electron-donor (FeS and S0 with a volume ratio of 2:1) iron sulfur autotrophic denitrification (ISAD) biofilter and operated at as short as 1 hr hydraulic retention time (HRT). Long-term operation results showed that the superior total nitrogen and phosphate removals of the ISAD biofilter were 90-100% at 1-12 h HRT, with the highest denitrification rate up to 960 mg/L/d. Considering low sulfate production, HRT of 3 h could be the optimal condition. Such superior performance in the ISAD biofilter was achieved due to the interactions between FeS and S0, which accelerated the denitrification process and maintained the acidity-alkalinity balance. Metagenomic analysis found that the enriched nitrate-dependent iron-oxidizing (NDFO) bacteria (Acinetobacter and Acidovorax), sulfur-oxidizing bacteria (SOB), and dissimilatory nitrate reduction to ammonia (DNRA) bacteria likely supported stable nitrate reduction. The metabolic pathway analysis showed that completely denitrification and DNRA, coupled with sulfur oxidation, disproportionation, iron oxidation and phosphate precipitation with FeS and S0 as co-electron donors, were responsible for the high-rate nitrate and phosphate removal. This study provides the potential of ISAD as a highly efficient post-denitrification technology and sheds light on the balanced microbial S-N-Fe transformation.


Asunto(s)
Desnitrificación , Nitratos , Nitratos/metabolismo , Procesos Autotróficos , Azufre/metabolismo , Hierro , Fosfatos , Sulfuros/metabolismo , Reactores Biológicos/microbiología , Nitrógeno
12.
Sci Total Environ ; 856(Pt 1): 159080, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179835

RESUMEN

Intensive animal farming produces large volume of digested liquid, and overdose application often causes the pollution of surface water and groundwater. Therefore, post-treatment is very necessary for the discharging of surplus digested liquid, but the removal of high concentrations of suspended solids (SS) in the digested liquid is a challenge. In this study, the effect of Ca(ClO)2 pretreatment on SS flocculation removal of digested dairy wastewater was investigated. The results showed that, without Ca(ClO)2 pretreatment, the flocculation by polyacrylamide (PAM), polyferric sulfate (PFS) or polymeric aluminum chloride (PAC) only removed 42.6 %-50.4 % SS from anaerobic digested liquid. With the combination of Ca(ClO)2 pretreatment and PAC flocculation together, the SS removal efficiency can reach 80 %. The total chemical oxygen demand (TCOD) removal had a similar trend with SS removal, but soluble chemical oxygen demand (SCOD) removal was less affected by the pretreatment and flocculation. More than 75 % of orthophosphate (SRP) and total soluble phosphorus (TSP) was removed after Ca(ClO)2 pretreatment and flocculation with PFS or PAC. Ca(ClO)2 pretreatment also effectively inactivated fecal bacteria. The mechanisms of Ca(ClO)2 pretreatment enhancing SS flocculation removal were further elucidated. The SS removal was the action of ClO- and Ca2+ together. The function of ClO- was to break down suspended particles, change the surface, and decrease the absolute Zeta potential, while the function of Ca2+ was to form precipitation. This result indicates that Ca(ClO)2 pretreatment can effectively enhance the SS flocculation removal of anaerobic digested liquid.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Floculación , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno
13.
Water Res ; 224: 119022, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36099758

RESUMEN

For preparing high performance biochar to be applicated in persulfate-based oxidation treatment of wastewater, the feasibility of deriving Fe-N biochar from pharmaceutical sludge by endogenous Fe and exogenous N doping was investigated. With exogenous urea doping, FexN contained biochar (PZBC800U) was successfully derived from endogenous Fe(OH)3 contained pharmaceutical sludge. PZBC800U effectively activated peroxymonosulfate (PMS) to remove 80 mg·L-1 levofloxacin (LEV) within 90 min. The main mechanism of PMS activation by PZBC800U for LEV degradation was revealed as non-radical pathways dominated by 1O2 generation and direct electron transfer. The formation of FexN combined with the increase of pyridinic-N in the biochar changed the electronic structure, improved the electron transfer ability, and thus achieved the excellent PMS activation capacity of the biochar. The vital function of endogenous Fe(OH)3 was verified by comparing PZBC800U to Fe leached and extra Fe added controls. A total of 18 intermediates in the degradation of LEV were identified, and degradation pathways were proposed. Combined with the average local ionization energy calculation, the priority of piperazine breakage during LEV degradation was experimentally proved and mechanistically elucidated. This study provides a new insight into FexN biochar preparation from pharmaceutical sludge and the mechanisms of its excellent PMS activation performance for LEV degradation.


Asunto(s)
Levofloxacino , Aguas del Alcantarillado , Carbón Orgánico/química , Peróxidos/química , Preparaciones Farmacéuticas , Piperazinas , Urea , Aguas Residuales
14.
Water Res ; 224: 119029, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36099760

RESUMEN

A shift from the acetoclastic to the hydrogenotrophic pathway in methanogenesis under ammonia inhibition is a common observation in anaerobic digestion. However, there are still considerable knowledge gaps concerning the differential ammonia tolerance of acetoclastic and hydrogenotrophic methanogens (AMs and HMs), their responses to different ammonia species (NH4+, NH3), and their recoverability after ammonia inhibition. With the successful enrichment of mesophilic AMs and HMs cultures, this study aimed at addressing the above knowledge gaps through batch inhibition/recovery tests and kinetic modeling under varying total ammonia (TAN, 0.2-10 g N/L) and pH (7.0-8.5) conditions. The results showed that the tolerance level of HMs to free ammonia (FAN, IC50=1345 mg N/L) and NH4+ (IC50=6050 mg N/L) was nearly 11 times and 3 times those of AMs (NH3, IC50=123 mg N/L; NH4+, IC50=2133 mg N/L), respectively. Consistent with general belief, the AMs were more impacted by FAN. However, the HMs were more adversely affected by NH4+ when the pH was ≤8.0. A low TAN (1.0-4.0 g N/L) could cause irreversible inhibition of the AMs due to significant cell death, whereas the activity of HMs could be fully or even over recovered from severe ammonia stress (FAN≤ 0.9 g N/L or TAN≤10 g N/L; pH ≤8.0). The different tolerance responses of AMs and HMs might be associated with the cell morphology, multiple energy-converting systems, and Gibbs free energy from substrate-level phosphorylation.


Asunto(s)
Amoníaco , Euryarchaeota , Amoníaco/metabolismo , Anaerobiosis , Reactores Biológicos , Euryarchaeota/metabolismo , Metano/metabolismo
15.
Sci Total Environ ; 850: 158039, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35981590

RESUMEN

Autotrophic denitrification using inorganic compounds as electron donors has gained increasing attention in the field of wastewater treatment due to its numerous advantages, such as no need for exogenous organic carbon, low energy input, and low sludge production. Tetracycline (TC), a refractory contaminant, is often found coexisting with nutrients (NO3- and PO43-) in wastewater, which can negatively affect the biological nutrient removal process because of its biological toxicity. However, the performance of autotrophic denitrification under TC stress has rarely been reported. In this study, the effects of TC on autotrophic denitrification with thiosulfate (Na2S2O3) and iron (II) sulfide (FeS) as the electron donors were investigated. With Na2S2O3 as the electron donor, TC slowed down the nitrate removal rate, which decreased from 1.32 to 0.18 d-1, when TC concentration increased from 0 mg/L to 50 mg/L. When TC concentration was higher than 2 mg/L, nitrite reduction was seriously inhibited, leading to nitrite accumulation. With FeS as the electron donor, nitrate removal was much more efficient under TC-stressed conditions, and no distinct nitrite accumulation was observed when the initial TC concentration was as high as 10 mg/L, indicating the effective detoxification of FeS. The detoxification effects in the FeS autotrophic denitrification system mainly resulted from the rapid adsorption of TC by FeS and effective degradation of TC, as proven by a relatively higher living biomass area. This study offers new insights into the response of sulfur-based autotrophic denitrifiers to TC stress and demonstrates that the FeS-based autotrophic denitrification process is a promising technology for the treatment of wastewater containing emerging contaminants and nutrients.


Asunto(s)
Desnitrificación , Aguas del Alcantarillado , Reactores Biológicos , Carbono , Compuestos Ferrosos , Hierro , Nitratos/metabolismo , Nitritos , Nitrógeno , Sulfuros , Azufre/química , Tetraciclina , Tiosulfatos , Aguas Residuales
16.
Sci Total Environ ; 838(Pt 1): 155866, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35568179

RESUMEN

Microalgae have great potential for biofuel production and wastewater treatment, but the high cost of harvesting hinders their practical application. In this study, economical harvesting of hydrophobic microalgae by electro-flotation without coagulation was assessed. The harvesting performance of this method for selected species of freshwater microalgae with different degrees of hydrophobicity (Tribonema sp., highly hydrophobic; Scenedesmus sp., moderately hydrophobic; and Pandorina sp., hydrophilic) were compared. It was found that microalgal hydrophobicity played a critical role in electro-flotation. Under the same condition (current 0.3 A, velocity gradient 200 s-1, biomass concentration 1 g/L), Tribonema sp. could be effectively harvested (96.2 ± 0.4%) after 20 min of electro-flotation, while the harvesting efficiency decreased significantly with Scenedesmus sp. (70.1 ± 5.2%, 20 min) and Pandorina sp. (<10%, 1 h). The influences of current, electrolysis time, mixing intensity (velocity gradient) and biomass concentration on Tribonema sp. (hydrophobic) harvesting were further investigated. Increasing the current within a certain range (0.1 A-0.4 A) was beneficial to harvesting, while it's further increase decreased floating velocity, which was similar to the effect of the velocity gradient. Under the optimal condition, the harvesting efficiency of Tribonema sp. was 96.3% and the energy consumption (0.19 kWh/kg biomass) was much lower than other harvesting techniques, indicating that electro-flotation is a time-saving and economical approach for hydrophobic microalgae harvesting.


Asunto(s)
Microalgas , Scenedesmus , Estramenopilos , Biomasa , Floculación , Interacciones Hidrofóbicas e Hidrofílicas
17.
Environ Sci Pollut Res Int ; 29(5): 7844-7852, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34480704

RESUMEN

Roxarsone (ROX), an organoarsenic feed additive, can be discharged into aquatic environment and photodegraded into more toxic inorganic arsenics. However, the photodegradation behavior of ROX in aquatic environment is still unclear. To better understand ROX photodegradation behavior, the influencing factors, photodegradation mechanism, and process modelling of ROX photodegradation were investigated in this study. The results showed that ROX in the aquatic environment was degraded to inorganic As(III) and As(V) under light irradiation. The degradation efficiency was enhanced by 25% with the increase of light intensity from 300 to 800 µW/cm2 via indirect photolysis. The photodegradation was temperature dependence, but was only slightly affected by pH. Nitrate ion (NO3-) had an obvious influence, but sulfate, carbonate, and chlorate ions had a negligible effect on ROX degradation. Dissolved organic matter (DOM) in the solution inhibited the photodegradation. ROX photodegradation was mainly mediated by reactive oxygen species (in the form of single oxygen 1O2) generated through ROX self-sensitization under irradiation. Based on the data of factors affecting ROX photodegradation, ROX photodegradation model was built and trained by an artificial neural network (ANN), and the predicted degradation rate was in good agreement with the real values with a root mean square error of 1.008. This study improved the understanding of ROX photodegradation behavior and provided a basis for controlling the pollution from ROX photodegradation.


Asunto(s)
Arsenicales , Roxarsona , Contaminantes Químicos del Agua , Materia Orgánica Disuelta , Redes Neurales de la Computación , Fotólisis , Contaminantes Químicos del Agua/análisis
18.
Environ Sci Pollut Res Int ; 29(13): 19212-19223, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34714478

RESUMEN

The stimulatory effect of biochar addition on dry anaerobic digestion (AD) has been rarely investigated. In this study, the effects of commonly used biochars (bamboo, rice husk, and pecan shell) on dry co-AD were investigated using mesophilic batch digesters fed with pig manure and food waste as substrates. The results show that the specific methane yield was mildly elevated with the addition of biochars by 7.9%, 9.4%, and 12.0% for bamboo, rice husk, and pecan shell-derived biochar additions, respectively. Biochar did facilitate the degradation of poorly biodegradable organics. In comparison, there was no significant effect on the peak methane production rate by the supplementation of the selected biochars. Among the three mechanisms of enhancing methanogenesis by biochar (buffering, providing supporting surface, and enhancing electron transfer), the first two mechanisms did not function significantly in dry co-AD, while the third mechanism (i.e., enhancing electron transfer) might play an important part in dry AD process. It is recommended that the utilization of biochar for the enhancement of biomethanation in dry AD should be more focused on mono digestion in future studies.


Asunto(s)
Estiércol , Eliminación de Residuos , Anaerobiosis , Animales , Reactores Biológicos , Carbón Orgánico , Digestión , Alimentos , Porcinos
19.
Waste Manag ; 126: 152-162, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770614

RESUMEN

This study investigated the performance of anaerobic co-digestion (AcoD) of pig manure and food waste on the reduction of antibiotic resistomes under wet and dry AcoD conditions. High-throughput quantitative PCR technology was utilized for a comprehensive assessment of the performances of the two processes. The results show that dry AcoD with a total solids (TS) content of 20% effectively reduced total antibiotic resistance genes (ARGs) by 1.24 log copies/g wet sample, while only 0.54 log copies/g wet sample was reduced in wet AcoD with a TS content of 5%. Dry AcoD was more efficient in reduction of aminoglycosides, multidrug and sulfonamide resistance genes compared with the reduction of other classes of ARGs. Dry AcoD caused a significant reduction of ARGs with resistance mechanisms of efflux pump and antibiotic deactivation. In contrast, there was no obvious difference in reductions of ARGs with different resistance mechanisms in wet AcoD. Network analysis showed that ARGs were significantly correlated with mobile genetic elements (MGEs) (Spearman's r > 0.8, P < 0.05), as well as microbial communities. Enrichment of ARGs and MGEs was found at the early period of AcoD processes, indicating some ARGs and MGEs increased during the hydrolysis and acidogenesis stages. But after a long retention time, their abundances were effectively reduced by dry AcoD in the subsequent stages.


Asunto(s)
Antibacterianos , Eliminación de Residuos , Anaerobiosis , Animales , Antibacterianos/farmacología , Digestión , Farmacorresistencia Microbiana/genética , Alimentos , Genes Bacterianos , Secuencias Repetitivas Esparcidas , Estiércol , Porcinos
20.
Chemosphere ; 270: 129460, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33423004

RESUMEN

Nitrogen removal is often limited in municipal wastewater treatment due to the insufficiency of carbon source, and using food wastes fermentation liquid as carbon source could cut down the cost of operating and recycle food wastes. Food wastes fermentation liquid production and application as external carbon source were explored in the laboratory and full-scale system in this study. In the laboratory scale, lactic acid and VFAs were the main components of fermentation liquid, and the highest total chemical oxygen demand (TCOD) production was obtained with activated sludge as inoculum. The yield of TCOD was around 794.5 mg/g TSfed and NH4+-N was 3.5 mg/g TSfed. The denitrification rate with fermentation liquid was slightly lower than acetic acid and butyric acid, but higher than lactic acid and starch. In the full-scale investigation, the TCOD concentration in fermentation liquid was in the range of 6.9-12.8 g/L and the ratio of TCOD/inorganic nitrogen was 210.5-504.5:1. NO3--N removal increased from 52.1% to 94.2% after fermentation liquid addition, confirming the potentiality of food wastes fermentation liquid replace the commercial carbon source in wastewater treatment plants.


Asunto(s)
Carbono , Eliminación de Residuos , Reactores Biológicos , Desnitrificación , Fermentación , Alimentos , Laboratorios , Nitrógeno , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA