Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Commun ; : 100891, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561965

RESUMEN

Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA