Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Biomed Pharmacother ; 175: 116780, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38781864

RESUMEN

Pueraria lobata, commonly known as kudzu, is a medicinal and food plant widely used in the food, health food, and pharmaceutical industries. It has clinical pharmacological effects, including hypoglycemic, antiinflammatory, and antioxidant effects. However, its mechanism of hypoglycemic effect on type 2 diabetes mellitus (T2DM) has not yet been elucidated. In this study, we prepared a Pueraria lobata oral liquid (POL) and conducted a comparative study in a T2DM rat model to evaluate the hypoglycemic effect of different doses of Pueraria lobata oral liquid. Our objective was to investigate the hypoglycemic effect of Puerarin on T2DM rats and understand its mechanism from the perspective of metabolomics. In this study, we assessed the hypoglycemic effect of POL through measurements of FBG, fasting glucose tolerance test, plasma lipids, and liver injury levels. Furthermore, we examined the mechanism of action of POL using hepatic metabolomics. The study's findings demonstrated that POL intervention led to improvements in weight loss, blood glucose, insulin, and lipid levels in T2DM rats, while also providing a protective effect on the liver. Finally, POL significantly affected the types and amounts of hepatic metabolites enriched in metabolic pathways, providing an important basis for revealing the molecular mechanism of Pueraria lobata intervention in T2DM rats. These findings indicate that POL may regulate insulin levels, reduce liver damage, and improve metabolic uptake in the liver. This provides direction for new applications and research on Pueraria lobata to prevent or improve T2DM.

2.
Arch Gerontol Geriatr ; 124: 105475, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38733921

RESUMEN

BACKGROUND: To investigate the relationship between egg consumption and mortality in individuals with pre-existing coronary heart disease or stroke. METHODS: This study utilized data from the National Health and Nutrition Examination Survey conducted between 1999 and 2018. Egg consumption was evaluated through 24 h dietary recalls at baseline. Mortality status was tracked until December 31, 2019. Survey-weighted Cox proportional hazards models were utilized. RESULTS: The study involved 3,975 participants aged 20 years or older with a median follow-up of 89.00 months. A total of 1,675 individuals died during follow-up. Compared to individuals who did not consume eggs, the consumption of 0-50 g/day (hazard ratio [HR] = 1.033, 95% confidence interval [CI] =0.878-1.214) was not found to have a significant association with all-cause mortality. However, consuming 50-100 g/day (HR = 1.281, 95% CI = 1.004-1.635) and >100 g/day (HR = 1.312, 95% CI =1.036-1.661) exhibited a significant association with an increased risk of all-cause mortality. We identified a non-liner relationship between egg consumption and cardiovascular mortality, where the risk was found to be lowest at an intake of about 50 g/day. For individuals consuming more than 50 g/day, each additional 50 g increment in egg consumption was significantly linked to an elevated risk of cardiovascular mortality (HR = 1.276, 95% CI = 1.009-1.614). CONCLUSION: In U.S. adults with pre-existing cardiovascular disease, a significant positive association was found between consuming over 50 g of eggs per day and the risk of mortality, highlighting the importance of moderate intake.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38805025

RESUMEN

Three psychrophilic bacteria, designated as strains SQ149T, SQ345T, and S1-1T, were isolated from deep-sea sediment from the South China Sea. All three strains were the most closely related to Thalassotalea atypica RZG4-3-1T based on the 16S rRNA gene sequence analysis (similarity ranged from 96.45 to 96.67 %). Phylogenetic analysis based on the 16S rRNA gene and core-genome sequences showed that three strains formed a cluster within the genus Thalassotalea. The average amino acid identity, average nucleotide identity, and digital DNA-DNA hybridization values among the three strains and closest Thalassotalea species were far below the cut-off value recommended for delineating species, indicating they each represented a novel species. All three strains were Gram-stain-negative, rod-shaped, and contained summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) as the predominant fatty acid, Q-8 as the major respiratory quinone, and phosphatidylethanolamine and phosphatidylglycerol as predominant polar lipids. Based on the genomic, phylogenetic, and phenotypic characterizations, each strain is considered to represent a novel species within the genus Thalassotalea, for which the names Thalassotalea psychrophila sp. nov. (type strain SQ149T=MCCC 1K04231T=JCM 33807T), Thalassotalea nanhaiensis sp. nov. (type strain SQ345T=MCCC 1K04232T=JCM 33808T), and Thalassotalea fonticola sp. nov. (type strain S1-1T=MCCC 1K06879T=JCM 34824T) are proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Agua de Mar , Análisis de Secuencia de ADN , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/química , China , Agua de Mar/microbiología
4.
Phytomedicine ; 129: 155614, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692078

RESUMEN

BACKGROUND: Cellular senescence is an emerging hallmark of cancers, primarily fuels cancer progression by expressing senescence-associated secretory phenotype (SASP). Caveolin-1 (CAV1) is a key mediator of cell senescence. Previous studies from our group have evidenced that the expression of CAV1 is downregulated by Celastrol (CeT). PURPOSE: To investigate the impact of CeT on cellular senescence and its subsequent influence on post-senescence-driven invasion, migration, and stemness of clear cell renal cell carcinoma (ccRCC). STUDY DESIGN AND METHODS: The expression levels of CAV1, canonical senescence markers, and markers associated with epithelial-mesenchymal transition (EMT) and stemness in clinical samples were assessed through Pearson correlation analysis. Senescent cell models were induced using DOX, and their impact on migration, invasion, and stemness was evaluated. The effects of CeT treatment on senescent cells and their pro-tumorigenic effects were examined. Subsequently, the underlying mechanism of CeT were explored using lentivirus transfection and CRISPR/Cas9 technology to silence CAV1. RESULTS: In human ccRCC clinical samples, the expression of the canonical senescence markers p53, p21, and p16 are associated with ccRCC progression. Senescent cells facilitated migration, invasion, and enhanced stemness in both ccRCC cells and ccRCC tumor-bearing mice. As expected, CeT treatment reduced senescence markers (p16, p53, p21, SA-ß-gal) and SASP factors (IL6, IL8, CXCL12), alleviating cell cycle arrest. However, it did not restore the proliferation of senescent cells. Additionally, CeT suppressed senescence-driven migration, invasion, and stemness. Further investigations into the underlying mechanism demonstrated that CAV1 is a critical mediator of cell senescence and represents a potential target for CeT to attenuate cellular senescence. CONCLUSIONS: This study presents a pioneering investigation into the intricate interplay between cellular senescence and ccRCC progression. We unveil a novel mechanism of CeT to mitigate cellular senescence by downregulating CAV1, thereby inhibiting the migration, invasion and stemness of ccRCC driven by senescent cells. These findings provide valuable insights into the underlying mechanisms of CeT and its potential as a targeted therapeutic approach for alleviating the aggressive phenotypes associated with senescent cells in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Caveolina 1 , Senescencia Celular , Transición Epitelial-Mesenquimal , Triterpenos Pentacíclicos , Caveolina 1/metabolismo , Senescencia Celular/efectos de los fármacos , Humanos , Triterpenos Pentacíclicos/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Línea Celular Tumoral , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Triterpenos/farmacología , Movimiento Celular/efectos de los fármacos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Ratones
5.
Cancer Sci ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801832

RESUMEN

Aberrant signaling in tumor cells induces nonmetabolic functions of some metabolic enzymes in many cellular activities. As a key glycolytic enzyme, the nonmetabolic function of hexokinase 2 (HK2) plays a role in tumor immune evasion. However, whether HK2, dependent of its nonmetabolic activity, plays a role in human pancreatic ductal adenocarcinoma (PDAC) tumorigenesis remains unclear. Here, we demonstrated that HK2 acts as a protein kinase and phosphorylates IκBα at T291 in PDAC cells, activating NF-κB, which enters the nucleus and promotes the expression of downstream targets under hypoxia. HK2 nonmetabolic activity-promoted activation of NF-κB promotes the proliferation, migration, and invasion of PDAC cells. These findings provide new insights into the multifaceted roles of HK2 in tumor development and underscore the potential of targeting HK2 protein kinase activity for PDAC treatment.

6.
J Agric Food Chem ; 72(17): 9567-9580, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38627202

RESUMEN

Monascus is a filamentous fungus that has been used in the food and pharmaceutical industries. When used as an auxiliary fermenting agent in the manufacturing of cheese, Monascus cheese is obtained. Citrinin (CIT) is a well-known hepatorenal toxin produced by Monascus that can harm the kidneys structurally and functionally and is frequently found in foods. However, CIT contamination in Monascus cheese is exacerbated by the metabolic ability of Monascus to product CIT, which is not lost during fermentation, and by the threat of contamination by Penicillium spp. that may be introduced during production and processing. Considering the safety of consumption and subsequent industrial development, the CIT contamination of Monascus cheese products needs to be addressed. This review aimed to examine its occurrence in Monascus cheese, risk implications, traditional control strategies, and new research advances in prevention and control to guide the application of biotechnology in the control of CIT contamination, providing more possibilities for the application of Monascus in the cheese industry.


Asunto(s)
Queso , Citrinina , Contaminación de Alimentos , Monascus , Monascus/metabolismo , Monascus/química , Queso/microbiología , Queso/análisis , Citrinina/análisis , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Humanos , Fermentación
7.
NPJ Parkinsons Dis ; 10(1): 70, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548756

RESUMEN

This study aimed to investigate the association between irritable bowel syndrome (IBS) and Parkinson's disease (PD) utilizing prospective cohort study and Mendelian randomization. The dataset contained a substantial cohort of 426,911 participants from the UK Biobank, discussing the association between IBS and PD with Cox proportional hazards models and case-control analysis while adjusting for covariates such as age, gender, ethnicity and education level. In univariate Cox regression model, the risk of PD was reduced in IBS patients (HR: 0.774, 95%CI: 0.625-0.956, P = 0.017), but the statistical significance diminished in the three models after adjusting for other variables. In a few subgroup analyses, IBS patients are less likely to develop into PD, and patients diagnosed with IBS after 2000 also had a lower risk (HR: 0.633, 95%CI: 0.403-0.994, P = 0.047) of subsequently developing PD. In addition, we matched five healthy control participants based on gender and age at the end of the study for each IBS patient diagnosed during the follow-up period, and logistic regression results (OR:1.239, 95%CI: 0.896-1.680, P = 0.181) showed that IBS was not associated with the risk of PD. Mendelian randomization did not find significant evidence of the causal relationship between IBS and Parkinson's disease (OR: 0.801, 95%CI: 0.570-1.278, P = 0.204). Overall, we suggest that IBS status is not associated with the risk of developing PD, and that these findings provide valuable insights into the clinical management and resource allocation of patients with IBS.

8.
BMC Public Health ; 24(1): 487, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365660

RESUMEN

BACKGROUND: The literature on therapeutic landscapes highlights that the university campus landscape has restorative effects on students. This deserves more scholarly attention since mental health has become an important issue among university students. However, existing empirical studies have revealed mixed evidence with little attention to the heterogeneity across the design and, therefore, the potential therapeutic effects across different landscapes. METHOD: This research examined how 13 landscape sites on a university campus might be differentially related to student well-being. These sites were identified from a variety of sources (campus design documents, photos used in the university's social media posts, and interviews with a small group of students) to represent a comprehensive list of places that students might visit. The data was collected in a large online survey of a Chinese university (n = 2,528). We asked about students' use of individual landscape sites and the associated motivations for visits, and measured well-being using a perceived stress scale and overall evaluation of the happiness level. Bivariate analysis was used to explore the zero-order associations between landscape use and well-being. OLS (for stress) and logistic regressions (for happiness) were conducted to further evaluate the associations after controlling the student background variables and potential correlations of uses across different landscapes. RESULTS: Among 13 landscape sites, four sites had significant positive associations with either or both measures of well-being after controlling for the student characteristics and use of the other landscape sites. There was also an additive benefit of visiting more landscapes. Compared to those who did not frequently visit any of the sites, well-being had a significant stepwise increase among those who frequently visited one or two and more sites. One site that was significantly related to both measures of well-being only offered distant views of landscapes, but it was right next to the study areas. CONCLUSIONS: This study demonstrates the heterogeneity of restorative effects across different landscapes on campus. The findings suggest that effective landscape design that aims to promote student well-being should be placed close to stressors (i.e., where they study), and between where they study and live to offer students opportunities to break from the common routines and to relax. The findings hold greater relevance for universities in China and institutions with similar student campus lifestyles, occupancies, and behavior patterns worldwide.


Asunto(s)
Pruebas Psicológicas , Estudiantes , Humanos , Universidades , Autoinforme , Encuestas y Cuestionarios
9.
Iran J Basic Med Sci ; 27(3): 366-374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333753

RESUMEN

Objectives: Cardiac arrest is a crucial procedure in various cardiac surgeries, during which the heart is subjected to an ischemic state. The occurrence of ischemia/reperfusion (I/R) injury is inevitable due to aortic blockage and opening. The Histidine-tryptophan-ketoglutarate (HTK) solution is commonly used as an organ protection liquid to mitigate cardiac injury during cardiac surgery. Despite its widespread use, there is significant potential for improving its protective efficacy. Materials and Methods: The cardioprotective effect of HTK solution with and without melatonin was evaluated using the isolated Langendorff-perfused mouse heart model. The isolated C57bL/6 mouse hearts were randomly divided into four groups: control, I/R, HTK solution treatment before reperfusion (HTK+I/R), and HTK solution combined with melatonin before reperfusion (HTK+M+I/R). Cardiac function and myocardial injury markers were then measured. AMP-activated protein kinase α2 (AMPKα2) KO mice were used to investigate the underlying mechanism. Results: In our study, we found that melatonin significantly improved the protective effects of HTK solution in an isolated Langendorff-perfused mouse model, mechanistically by reducing mitochondrial damage, improving energy metabolism, inhibiting cardiomyocyte apoptosis, and reducing myocardial infarction size. We also observed that the HTK solution alone was ineffective in inhibiting ER stress, but when melatonin was added, there was a significant reduction in ER stress. Furthermore, melatonin was found to alleviate carbonyl stress during cardiac I/R. Interestingly, our results showed that the cardioprotective properties of melatonin were dependent on AMPKα2. Conclusion: The findings presented in this study offer a valuable empirical foundation for the development of perioperative cardioprotective strategies.

10.
Sci Rep ; 14(1): 3063, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321129

RESUMEN

Tennis elbow (lateral epicondylitis) typically responds well to conservative treatment, and few patients require surgical intervention. This study aimed to investigate the influence of lifestyle and clinical factors on the prognosis of tennis elbow. This prospective, multicenter, nested case-control study included patients diagnosed with lateral epicondylitis after excluding other conditions. Patients who required surgery because of inadequate improvement after 6 months of conservative treatment were defined as the case group; the remaining patients constituted the control group. Propensity score matching was performed to eliminate baseline differences. Univariate and multivariate analyses were performed using logistic regression. This study included 265 patients (53 in the case group, 212 in the control group). Multivariate analysis revealed that smoking, alcohol consumption, and frequent physical exercise were independent risk factors for surgical intervention, whereas combined treatment with oral nonsteroidal anti-inflammatory drugs (NSAIDs) and local corticosteroid injections was a protective factor against surgery. Subgroup analysis showed that heavy drinkers had a 3.74-fold higher risk of requiring surgical treatment within 1 year than occasional drinkers. Smoking and alcohol consumption were associated with non-operative treatment failure in patients with lateral epicondylitis. Combining oral NSAIDs and corticosteroid injections is a favorable conservative treatment option.


Asunto(s)
Codo de Tenista , Humanos , Codo de Tenista/tratamiento farmacológico , Estudios de Casos y Controles , Estudios Prospectivos , Insuficiencia del Tratamiento , Corticoesteroides/uso terapéutico , Estilo de Vida , Antiinflamatorios no Esteroideos/uso terapéutico
11.
J Biol Chem ; 300(3): 105762, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367665

RESUMEN

Long non-coding RNAs (LncRNAs) could regulate chemoresistance through sponging microRNAs (miRNAs) and sequestering RNA binding proteins. However, the mechanism of lncRNAs in rituximab resistance in diffuse large B-cell lymphoma (DLBCL) is largely unknown. Here, we investigated the functions and molecular mechanisms of lncRNA CHROMR in DLBCL tumorigenesis and chemoresistance. LncRNA CHROMR is highly expressed in DLBCL tissues and cells. We examined the oncogenic functions of lncRNA CHROMR in DLBCL by a panel of gain-or-loss-of-function assays and in vitro experiments. LncRNA CHROMR suppression promotes CD20 transcription in DLBCL cells and inhibits rituximab resistance. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assay reveal that lncRNA CHROMR sponges with miR-27b-3p to regulate mesenchymal-epithelial transition factor (MET) levels and Akt signaling in DLBCL cells. Targeting the lncRNA CHROMR/miR-27b-3p/MET axis reduces DLBCL tumorigenesis. Altogether, these findings provide a new regulatory model, lncRNA CHROMR/miR-27b-3p/MET, which can serve as a potential therapeutic target for DLBCL.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinogénesis , Resistencia a Antineoplásicos , Linfoma de Células B Grandes Difuso , MicroARNs , Proteínas Proto-Oncogénicas c-met , ARN Largo no Codificante , Rituximab , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , MicroARNs/genética , MicroARNs/metabolismo , Rituximab/farmacología , Rituximab/uso terapéutico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Resistencia a Antineoplásicos/genética , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-met/metabolismo
12.
BMC Med Inform Decis Mak ; 24(1): 2, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167056

RESUMEN

BACKGROUND: Acute Myeloid Leukemia (AML) generally has a relatively low survival rate after treatment. There is an urgent need to find new biomarkers that may improve the survival prognosis of patients. Machine-learning tools are more and more widely used in the screening of biomarkers. METHODS: Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), lrFuncs, IdaProfile, caretFuncs, and nbFuncs models were used to screen key genes closely associated with AML. Then, based on the Cancer Genome Atlas (TCGA), pan-cancer analysis was performed to determine the correlation between important genes and AML or other cancers. Finally, the diagnostic value of important genes for AML was verified in different data sets. RESULTS: The survival analysis results of the training set showed 26 genes with survival differences. After the intersection of the results of each machine learning method, DNM1, MEIS1, and SUSD3 were selected as key genes for subsequent analysis. The results of the pan-cancer analysis showed that MEIS1 and DNM1 were significantly highly expressed in AML; MEIS1 and SUSD3 are potential risk factors for the prognosis of AML, and DNM1 is a potential protective factor. Three key genes were significantly associated with AML immune subtypes and multiple immune checkpoints in AML. The results of the verification analysis show that DNM1, MEIS1, and SUSD3 have potential diagnostic value for AML. CONCLUSION: Multiple machine learning methods identified DNM1, MEIS1, and SUSD3 can be regarded as prognostic biomarkers for AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Pronóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Aprendizaje Automático , Factores de Riesgo , Máquina de Vectores de Soporte
13.
Sci Total Environ ; 915: 170097, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38224898

RESUMEN

Despite widespread recognition of pollen's potential sensitivity to ultraviolet-B (UV-B) radiation (280-315 nm), there remains ongoing debate surrounding the extent and mechanisms of this effect. In this study, using published data on pollen germination and tube growth including 377 pair-wise comparisons from 77 species in 30 families, we present the first global quantification of the effects of UV-B radiation on pollen germination and tube growth, along with its underlying mechanisms. Our results showed a substantial reduction in both pollen germination and tube growth in response to UV-B radiation, affecting 90.9 % and 84.2 % of species, respectively. Notably, these reductions exhibited phylogenetic constraints, highlighting the role of evolutionary history in shaping the sensitivity of pollen germination and tube growth to UV-B radiation. A negative correlation between elevation and the sensitivity of pollen tube growth was detected, suggesting that pollens from plants at higher elevations exhibit greater resistance to UV-B radiation. Our investigation also revealed that the effects of UV-B radiation on pollen germination and tube growth were influenced by a range of abiotic and biotic factors. Nevertheless, the intensity and duration of UV-B radiation exposure exhibited the highest explanatory power for the effects on both pollen germination and tube growth. This suggests that the responses of pollens to UV-B radiation are profoundly influenced by its dose, a critical consideration within the context of global change. In conclusion, our study provides valuable insights into the diverse responses of pollen germination and tube growth to UV-B radiation, highlighting the environment and species-dependent nature of pollen's susceptibility to UV-B radiation, with substantial implications for our understanding of the ecological and agricultural consequences of ongoing changes in UV-B radiation.


Asunto(s)
Germinación , Polen , Humanos , Filogenia , Polen/fisiología , Plantas , Evolución Biológica
14.
J Cardiovasc Transl Res ; 17(1): 121-132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37650988

RESUMEN

Heart failure (HF) caused by structural or functional cardiac abnormalities is a significant cause of morbidity and mortality worldwide. While HF with reduced ejection fraction (HErEF) is well understood, more than half of patients have HF with preserved ejection fraction (HFpEF). Currently, the treatment for HFpEF primarily focuses on symptom alleviation, lacking specific drugs. The stressed heart undergoes metabolic switches in substrate preference, which is a compensatory process involved in cardiac pathological remodeling. Although metabolic reprogramming in HF has gained attention in recent years, its role in HFpEF still requires further elucidation. In this review, we present a summary of cardiac mitochondrial dysfunction and cardiac metabolic reprogramming in HFpEF. Additionally, we emphasize potential therapeutic approaches that target metabolic reprogramming for the treatment of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Humanos , Insuficiencia Cardíaca/diagnóstico , Volumen Sistólico , Reprogramación Metabólica , Miocardio/patología , Disfunción Ventricular Izquierda/metabolismo
15.
J Sci Food Agric ; 104(2): 1063-1073, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37743570

RESUMEN

BACKGROUND: Myoglobin (MB), a pigmentation protein, can adversely affect the antibacterial activity of carvacrol (CAR) and weaken its bacteriostasis effect. This study aimed to clarify the influence of MB on the antibacterial activity of CAR and ascertain the mechanism involved in the observed influence, especially the interaction between the two compounds. RESULTS: Microbiological analysis indicated that the presence of MB significantly suppressed the antibacterial activity of CAR against Listeria monocytogenes. Ultraviolet-visible spectrometry and fluorescence spectroscopic analysis confirmed the interaction between CAR and MB. The stoichiometric number was determined as ~0.7 via double logarithmic Stern-Volmer equation analysis, while thermodynamic analysis showed that the conjugation of the two compounds occurred as an exothermal reaction (ΔH° = -32.3 ± 11.4 kJ mol-1 and ΔS° = -75 J mol-1 K-1 ). Circular dichroism, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy showed hydrogen bonding in the carvacrol-myoglobin complex (CAR-MB). Molecular docking analysis confirmed that amino acid residues, including GLY80 and HIS82, were most likely to form hydrogen bonds with CAR, while hydrogen bonds represented the main driving force for CAR-MB formation. CONCLUSION: CAR antibacterial activity was significantly inhibited by the presence of MB in the environment due to the notable reduction in the effective concentration of CAR caused by CAR-MB formation. © 2023 Society of Chemical Industry.


Asunto(s)
Antibacterianos , Mioglobina , Simulación del Acoplamiento Molecular , Mioglobina/química , Espectrometría de Fluorescencia , Unión Proteica , Termodinámica , Antibacterianos/farmacología , Dicroismo Circular , Sitios de Unión , Espectroscopía Infrarroja por Transformada de Fourier/métodos
16.
Int Immunopharmacol ; 127: 111379, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38141409

RESUMEN

Microglial activation and autophagy play a critical role in the progression of ischemic stroke and contribute to the regulation of neuroinflammation. Unc-51-like kinase 1 (ULK1) is the primary autophagy kinase involved in autophagosome formation. However, the impact of ULK1 on neuroprotection and microglial activation after ischemic stroke remains unclear. In this study, we established a photothrombotic stroke model, and administered SBI-0206965 (SBI), an ULK1 inhibitor, and LYN-1604 hydrochloride (LYN), an ULK1 agonist, to modulate ULK1 activity in vivo. We assessed sensorimotor deficits, neuronal apoptosis, and microglial/macrophage activation to evaluate the neurofunctional outcome. Immunofluorescence results revealed ULK1 was primarily localized in the microglia of the infarct area following ischemia. Upregulating ULK1 through LYN treatment significantly reduced infarct volume, improved motor function, promoted the increase of anti-inflammatory microglia. In conclusion, ULK1 facilitated neuronal repair and promoted the formation of anti-inflammatory microglia pathway after ischemic injury.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Microglía/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Neuroprotección , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Activación de Macrófagos , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Macrófagos/metabolismo , Infarto/metabolismo , Antiinflamatorios/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
17.
Nat Sci Sleep ; 15: 979-992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046177

RESUMEN

Purpose: Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder. Research conducted on patients with OSA using electroencephalography (EEG) has revealed a noticeable shift in the overnight polysomnography (PSG) power spectrum. To better quantify the effects of OSA on brain function and to identify the most reliable predictors of pathological cortical activation, this study quantified the PSG power and its association with the degree of hypoxia in OSA patients. Patients and Methods: This retrospective study recruited 93 patients with OSA. OSA patients were divided into three groups based on their apnea-hypopnea index (AHI) scores. The clinical characteristics and sleep macrostructure of these patients were examined, followed by an analysis of PSG signals. Power spectral density (PSD) in five frequency bands was analyzed during nonrapid eye movement (NREM) sleep, rapid eye movement (REM) sleep, and wakefulness. Finally, correlation analysis was conducted to assess the relationships among PSD, PSG parameters, and serum levels of S100ß and uric acid. Results: Obstructive sleep apnea occurred during both the NREM and REM sleep phases. Except for a decrease in the duration of N2 sleep and an increase in the microarousal index, there were no significant differences in sleep architecture based on disease severity. Compared to the mild OSA group, the theta and alpha band PSD in the frontal and occipital regions during NREM sleep and wakefulness were significantly decreased in the moderate and severe OSA groups. Correlation analysis revealed that theta PSD in N1 and N3 stages were negatively correlated the AHI, oxygen desaturation index, SaO2<90% and microarousal index. Conclusion: These findings imply that patients with more severe OSA exhibited considerable NREM hypoxia and abnormal brain activity in the frontal and occipital regions. Therefore, sleep EEG oscillation may be a useful neurophysiological indicator for assessing brain function and disease severity in patients with OSA.

18.
Glob Med Genet ; 10(4): 388-394, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38116489

RESUMEN

The aim of the study was to evaluate the potential diagnostic and prognostic value of gene, Poly A-Binding Protein Interacting Protein 2B ( PAIP2B ) in pancreatic cancer. We used the gene expression data and clinical information of pancreatic adenocarcinoma patients from The Cancer Genome Atlas database and Gene Expression Omnibus database to analyze the expression of PAIP2B in pancreatic cancer samples, and validated the expression of PAIP2B in tumor tissue, using bioinformatics technology to explore the prognostic value of PAIP2B and its possible biological function. A significantly lower level of PAIP2B was observed in pancreatic cancer patients than in controls, and validated by immunohistochemistry. PAIP2B reduced the proliferation and invasion of cancer cells and had a significantly high expression in early stage. Patients with lower levels of PAIP2B had a significantly shorter median survival time than those with higher levels. DNA demethylation played an important role in PAIP2B expression. In addition, PAIP2B expression was significantly associated with the tumor-infiltrating immune cells, especially T cells CD8, T cells CD4 memory resting, macrophages M0, and dendritic cells resting. Our study also found that PAIP2B regulated miRNA function leading to disease progression in pancreatic cancer patients. Our study explored the potential value of PAIP2B as a biological link between prognosis and pancreatic cancer, and provided reference for the follow-up study on the role of PAIP2B in pancreatic cancer.

19.
Mov Disord ; 38(12): 2258-2268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37990409

RESUMEN

BACKGROUND: Patients with Parkinson's disease (PD) have consistently demonstrated brain structure abnormalities, indicating the presence of shared etiological and pathological processes between PD and brain structures; however, the genetic relationship remains poorly understood. OBJECTIVE: The aim of this study was to investigate the extent of shared genetic architecture between PD and brain structural phenotypes (BSPs) and to identify shared genomic loci. METHODS: We used the summary statistics from genome-wide association studies to conduct MiXeR and conditional/conjunctional false discovery rate analyses to investigate the shared genetic signatures between PD and BSPs. Subsequent expression quantitative trait loci mapping in the human brain and enrichment analyses were also performed. RESULTS: MiXeR analysis identified genetic overlap between PD and various BSPs, including total cortical surface area, average cortical thickness, and specific brain volumetric structures. Further analysis using conditional false discovery rate (FDR) identified 21 novel PD risk loci on associations with BSPs at conditional FDR < 0.01, and the conjunctional FDR analysis demonstrated that PD shared several genomic loci with certain BSPs at conjunctional FDR < 0.05. Among the shared loci, 16 credible mapped genes showed high expression in the brain tissues and were primarily associated with immune function-related biological processes. CONCLUSIONS: We confirmed the polygenic overlap with mixed directions of allelic effects between PD and BSPs and identified multiple shared genomic loci and risk genes, which are likely related to immune-related biological processes. These findings provide insight into the complex genetic architecture associated with PD. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad/genética , Fenotipo , Encéfalo/diagnóstico por imagen , Polimorfismo de Nucleótido Simple/genética , Sitios Genéticos
20.
PeerJ ; 11: e16450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025683

RESUMEN

Background: As a three-dimensional network involving glycosaminoglycans (GAGs), proteoglycans (PGs) and other glycoproteins, the role of extracellular matrix (ECM) in tumorigenesis is well revealed. Abnormal glycosylation in liver cancer is correlated with tumorigenesis and chemoresistance. However, the role of galactosyltransferase in HCC (hepatocellular carcinoma) is largely unknown. Methods: Here, the oncogenic functions of B4GALT7 (beta-1,4-galactosyltransferase 7) were identified in HCC by a panel of in vitro experiments, including MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), colony formation, transwell and flow cytometry assay. The expression of B4GALT7 in HCC cell lines and tissues were examined by qPCR (real-time quantitative polymerase chain reaction) and western blot assay. The binding between B4GALT7 and miR-338-3p was examined by dual-luciferase reporter assay. Results: B4GALT7 encodes galactosyltransferase I and it is highly expressed in HCC cells and human HCC tissues compared with para-tumor specimens. MiR-338-3p was identified to bind the 3' UTR (untranslated region) of B4GALT7. Highly expressed miR-338-3p suppressed HCC cell invasive abilities and rescued the tumor-promoting effect of B4GALT7 in HCC. ShRNA (short hairpin RNA) mediated B4GALT7 suppression reduced HCC cell invasive abilities, and inhibited the expression of MMP-2 and Erk signaling. Conclusion: These findings identified B4GALT7 as a potential prognostic biomarker and therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinogénesis , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Hepáticas/genética , Metaloproteinasa 2 de la Matriz , MicroARNs/genética , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA