Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Sci Adv ; 10(21): eadn8490, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781339

RESUMEN

Glacier and permafrost shrinkage and land-use intensification threaten mountain wildlife and affect nature conservation strategies. Here, we present paleometagenomic records of terrestrial and aquatic taxa from the southeastern Tibetan Plateau covering the last 18,000 years to help understand the complex alpine ecosystem dynamics. We infer that steppe-meadow became woodland at 14 ka (cal BP) controlled by cryosphere loss, further driving a herbivore change from wild yak to deer. These findings weaken the hypothesis of top-down control by large herbivores in the terrestrial ecosystem. We find a turnover in the aquatic communities at 14 ka, transitioning from glacier-related (blue-green) algae to abundant nonglacier-preferring picocyanobacteria, macrophytes, fish, and otters. There is no evidence for substantial effects of livestock herding in either ecosystem. Using network analysis, we assess the stress-gradient hypothesis and reveal that root hemiparasitic and cushion plants are keystone taxa. With ongoing cryosphere loss, the protection of their habitats is likely to be of conservation benefit on the Tibetan Plateau.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Metagenómica , Tibet , Animales , Metagenómica/métodos , Sedimentos Geológicos/microbiología , Cubierta de Hielo/microbiología , Herbivoria , Hielos Perennes/microbiología
2.
Materials (Basel) ; 17(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38730785

RESUMEN

Liquid metal (LM) is widely used in flexible electronic devices due to its excellent metallic conductivity and ductility. However, the fabrication of LM flexible strain sensors with high sensitivity and linearity is still a huge challenge, since the resistance of LM does not change much with strain. Here, a highly sensitive and linear fully flexible strain sensor with a resistive sensing function is proposed. The sensor comprises an Fe-doped liquid metal (Fe-LM) electrode for enhanced performance. The design and manufacturing of flexible strain sensors are based on the technology of controlling surface wettability by femtosecond laser micro/nano-processing. A supermetalphobic microstructure is constructed on a polydimethylsiloxane (PDMS) substrate to achieve the selection adhesion of Fe-LM on the PDMS substrate. The Fe-LM-based flexible strain sensor has high sensitivity and linearity, a gauge factor (GF) up to 1.18 in the strain range of 0-100%, excellent linearity with an R2 of 0.9978, a fast response time of 358 ms, and an excellent durability of more than 2400 load cycles. Additionally, the successful monitoring of human body signals demonstrates the potential of our developed flexible strain sensor in wearable monitoring applications.

3.
PLoS One ; 19(3): e0298439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483852

RESUMEN

Enhancing the robustness of complex networks is of great practical significance as it ensures the stable operation of infrastructure systems. We measure its robustness by examining the size of the largest connected component of the network after initial attacks. However, traditional research on network robustness enhancement has mainly focused on low-order networks, with little attention given to higher-order networks, particularly higher-low order coupling networks(the largest connected component of the network must exist in both higher-order and low-order networks). To address this issue, this paper proposes robust optimization methods for higher-low order coupled networks based on the greedy algorithm and the simulated annealing algorithm. By comparison, we found that the simulated annealing algorithm performs better. The proposed method optimizes the topology of the low-order network and the higher-order network by randomly reconnecting the edges, thereby enhancing the robustness of the higher-order and low-order coupled network. The experiments were conducted on multiple real networks to evaluate the change in the robustness coefficient before and after network optimization. The results demonstrate that the proposed method can effectively improve the robustness of both low-order and higher-order networks, ultimately enhancing the robustness of higher-low order coupled networks.


Asunto(s)
Algoritmos , Modelos Teóricos
4.
Hortic Res ; 11(3): uhae008, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38487544

RESUMEN

As an important horticultural plant, Rhododendron is often used in urban greening and landscape design. However, factors such as the high rate of genetic recombination, frequent outcrossing in the wild, weak linkage disequilibrium, and the susceptibility of gene expression to environmental factors limit further exploration of functional genes related to important horticultural traits, and make the breeding of new varieties require a longer time. Therefore, we choose bark as the target trait which is not easily affected by environmental factors, but also has ornamental properties. Genome-wide association study (GWAS) of Rhododendron delavayi (30 samples), R. irroratum (30 samples) and their F1 generation R. agastum (200 samples) was conducted on the roughness of bark phenotypes. Finally, we obtained 2416.31 Gbp of clean data and identified 5 328 800 high-quality SNPs. According to the P-value and the degree of linkage disequilibrium of SNPs, we further identified 4 out of 11 candidate genes that affect bark roughness. The results of gene differential expression analysis further indicated that the expression levels of Rhdel02G0243600 and Rhdel08G0220700 in different bark phenotypes were significantly different. Our study identified functional genes that influence important horticultural traits of Rhododendron, and illustrated the powerful utility and great potential of GWAS in understanding and exploiting wild germplasm genetic resources of Rhododendron.

5.
Neural Netw ; 172: 106092, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38211460

RESUMEN

Spiking neural networks (SNNs) are considered an attractive option for edge-side applications due to their sparse, asynchronous and event-driven characteristics. However, the application of SNNs to object detection tasks faces challenges in achieving good detection accuracy and high detection speed. To overcome the aforementioned challenges, we propose an end-to-end Trainable Spiking-YOLO (Tr-Spiking-YOLO) for low-latency and high-performance object detection. We evaluate our model on not only frame-based PASCAL VOC dataset but also event-based GEN1 Automotive Detection dataset, and investigate the impacts of different decoding methods on detection performance. The experimental results show that our model achieves competitive/better performance in terms of accuracy, latency and energy consumption compared to similar artificial neural network (ANN) and conversion-based SNN object detection model. Furthermore, when deployed on an edge device, our model achieves a processing speed of approximately from 14 to 39 FPS while maintaining a desirable mean Average Precision (mAP), which is capable of real-time detection on resource-constrained platforms.


Asunto(s)
Redes Neurales de la Computación
6.
Int J Biol Macromol ; 254(Pt 2): 127824, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924900

RESUMEN

Osteoporosis (OP) is a common systemic bone disorder, and the programmed cell death of osteoblasts is closely linked to the development of osteoporosis. Previous studies have shown that c-fos can cause osteoblast apoptosis. Furthermore, it has been demonstrated that long non-coding RNA (lncRNA) plays a pervasive role in regulating the biology of osteoblasts. Nevertheless, the precise role and mechanism of long non-coding RNA (lncRNA) in relation to c-Fos at the transcriptional level in osteoblast cell death remain uncertain. Compared with normal osteoblasts, serum deprivation resulted in significant upregulation of the transcription factor c-Fos and apoptosis-related Fas proteins in osteoblasts. In addition, the expression of lncRNA GM15416 related to c-Fos was significantly increased. The results showed that overexpression of c-Fos leads to an increase in downstream Fas protein, which subsequently leads to osteoblast apoptosis and hinders osteogenesis. On the contrary, a decrease in lncRNA GM15416 expression leads to a decrease in c-Fos/Fas expression, which hinders osteoblast apoptosis and promotes osteogenesis. Our results suggest that lncRNA GM15416 exerts inhibitory effects on osteoblast apoptosis and acts as a preventive factor against osteoporosis. As a result, GM15416 emerges as an important lncRNA associated with osteoporosis and holds potential as a future therapeutic target.


Asunto(s)
Osteoporosis , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Proteínas Proto-Oncogénicas c-fos/genética , Osteoblastos , Osteoporosis/genética , Osteoporosis/metabolismo , Osteogénesis/genética , Apoptosis/genética
7.
Ren Fail ; 45(2): 2285869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044851

RESUMEN

Acute kidney injury (AKI) is a common disorder without effective therapy yet. Renal ischemia/reperfusion (I/R) injury is a common cause of AKI. MicroRNA miR-192-5p has been previously reported to be upregulated in AKI models. However, its functional role in renal I/R injury is not fully understood. This study aimed to investigate the effects and the underlying mechanism of miR-192-5p in renal I/R progression. Hypoxia/reoxygenation (H/R)-induced cell injury model in HK-2 cells and I/R-induced renal injury model in mice were established in this study. Cell counting kit-8 assay was performed to determine cell viability. Quantitative real-time PCR and western blot analysis were performed to detect gene expressions. Hematoxylin-eosin and periodic acid-Schiff staining were performed to observe the histopathological changes. Enzyme-linked immunosorbent assay was performed to detect the kidney markers' expression. In vivo and in vitro results showed that miR-192-5p was up-regulated in the I/R-induced mice model and H/R-induced cell model, and miR-192-5p overexpression exacerbated I/R-induced renal damage. Then, the downstream target of miR-192-5p was analyzed by combining the differentially expressed mRNAs and the predicted genes and confirmed using a dual-luciferase reporter assay. It was found that miR-192-5p was found to regulate fat mass and obesity-associated (FTO) protein expression by directly targeting the 3' untranslated region of FTO mRNA. Moreover, in vivo and in vitro studies unveiled that FTO overexpression alleviated renal I/R injury and promoted HK-2 cell viability via stimulating autophagy flux. In conclusion, miR-192-5p aggravated I/R-induced renal injury by blocking autophagy flux via down-regulating FTO.


Asunto(s)
Lesión Renal Aguda , MicroARNs , Daño por Reperfusión , Animales , Humanos , Ratones , Lesión Renal Aguda/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Apoptosis , Riñón/patología , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/complicaciones , Obesidad/genética , Ratas Sprague-Dawley , Daño por Reperfusión/complicaciones , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo
8.
Adv Sci (Weinh) ; 10(33): e2303418, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37688344

RESUMEN

The properly applied pressure between the skin and hemostasis devices is an essential parameter for preventing bleeding and postoperative complications after a transradial procedure. However, this parameter is usually controlled based on the subjective judgment of doctors, which might cause insufficient hemostatic effect or thrombosis. Here this study develops a compact and wireless sensing system for continuously monitoring the pressure applied on the radial artery and wrist skin in clinical practice. A liquid metal (LM)-based all-soft pressure sensor is fabricated to enable conformal attachment between the device and skin even under large deformation conditions. The linear sensitivity of 0.007 kPa-1 among the wide pressure range of 0-100 kPa is achieved and the real-time detection data can be wirelessly transmitted to mobile clients as a reference pressure value. With these devices, detailed pressure data can be collected, analyzed, and stored for medical assistance as well as to improve surgery quality.


Asunto(s)
Hemostasis , Piel , Humanos , Tecnología Inalámbrica , Complicaciones Posoperatorias
9.
Opt Express ; 31(19): 30650-30657, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710604

RESUMEN

We developed a mobile superconducting strip photon detector (SSPD) system operated in a liquid-helium Dewar. By adopting highly disordered NbTiN thin films, we successfully enhanced the detection performance of superconducting strips at higher operation temperatures and realized SSPDs with nearly saturated detection efficiency at 4.2 K. Then we customized a compact liquid-helium Dewar and a battery-based electronic module to minimize the SSPD system. A mobile SSPD system was integrated, which showed a system detection efficiency of 72% for a 1550 nm wavelength with a dark count rate of 200 cps and a timing jitter of 67.2 ps. The system has a weight of 40 kg and a power consumption of 500 mW, which can work continuously for 20 hours. The metrics can be further optimized in accordance with the various practical application platforms, such as aircraft, drones, etc.

10.
Mol Cell Biochem ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648958

RESUMEN

In animal studies, sodium-glucose co-transporter-2 inhibitors-such as empagliflozin-have been shown to improve heart failure and impaired cardiac contractility induced by anthracyclines-including doxorubicin-although the therapeutic mechanism remains unclear. Moreover, abnormalities in Ca2+ handling within ventricular myocytes are the predominant feature of heart failure. Accordingly, this study aimed to investigate whether empagliflozin can alleviate Ca2+ handling disorders induced by acute doxorubicin exposure and elucidate the underlying mechanisms. To this end, ventricular myocytes were isolated from C57BL/6 mice. Contraction function, Ca2+ handling, and mitochondrial reactive oxygen species (ROS) generation were then evaluated using IonOptix or confocal microscopy. Ca2+ handling proteins were detected by western blotting. Results show that incubation with 1 µmol/L of doxorubicin for 120-min impaired cardiac contractility in isolated myocytes, which was significantly alleviated by pretreatment with 1 µmol/L of empagliflozin. Doxorubicin also markedly induced Ca2+ handling disorders, including decreased Ca2+ transients, prolonged Ca2+ transient decay time, enhanced frequency of Ca2+ sparks, and decreased Ca2+ content in the sarcoplasmic reticulum. These dysregulations were improved by pretreatment with empagliflozin. Moreover, empagliflozin effectively inhibited doxorubicin-induced mitochondrial ROS production in isolated myocytes and rescued doxorubicin-induced oxidation of Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) and CaMKII-dependent phosphorylation of RyR2. Similarly, preincubation with 10 µmol/L Mito-TEMPO mimicked the protective effects of empagliflozin. Collectively, Empagliflozin ameliorated the doxorubicin-induced contraction malfunction and Ca2+-handling disorders. These findings suggest that empagliflozin alleviates Ca2+-handling disorders by improving ROS production in the mitochondria and alleviating the enhanced oxidative CaMKII signaling pathway induced by doxorubicin.

11.
J Transl Med ; 21(1): 536, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573305

RESUMEN

BACKGROUND: Studies have examined the effect of weight change on osteoporosis, but the results were controversial. Among them, few had looked at weight change over the life span. This study aimed to fill this gap and investigate the association between lifetime body mass index (BMI) trajectories and bone loss. METHODS: In this cross-sectional study, participants at age 50 and above were selected from the National Health and Nutrition Examination Survey (NHANES) 2005-2018. Dual-energy X-ray Absorptiometry was used to measure the bone mineral density at the femoral neck and lumbar spine. Standard BMI criteria were used, with < 25 kg/m2 for normal, 25-29.9 kg/m2 for overweight, and ≥ 30 kg/m2 for obesity. The latent class trajectory model (LCTM) was used to identify BMI trajectories. Multinomial logistic regression models were fitted to evaluate the association between different BMI trajectories and osteoporosis or osteopenia. RESULTS: For the 9,706 eligible participants, we identified four BMI trajectories, including stable (n = 7,681, 70.14%), slight increase (n = 1253, 12.91%), increase to decrease (n = 195, 2.01%), and rapid increase (n = 577, 5.94%). Compared with individuals in the stable trajectory, individuals in the rapid increase trajectory had higher odds of osteoporosis (OR = 2.25, 95% CI 1.19-4.23) and osteopenia (OR = 1.49, 95% CI 1.02-2.17). This association was only found in the lumbar spine (OR = 2.11, 95% CI 1.06-4.2) but not in the femoral neck. In early-stage (age 25-10 years ago) weight change, staying an obesity and stable weight seemed to have protective effects on osteoporosis (OR = 0.26, 95% CI 0.08-0.77) and osteopenia (OR = 0.46, 95% CI 0.25-0.84). Meanwhile, keeping an early-stage stable and overweight was related to lower odds of osteopenia (OR = 0.53, 95% CI 0.34-0.83). No statistically significant association between recent (10 years ago to baseline) weight change and osteoporosis was found. CONCLUSIONS: Rapid and excess weight gain during adulthood is associated with a higher risk of osteoporosis. But this association varies by skeletal sites. Maintaining stable overweight and obesity at an early stage may have potentially beneficial effects on bone health.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Humanos , Adulto , Persona de Mediana Edad , Índice de Masa Corporal , Encuestas Nutricionales , Estudios Transversales , Sobrepeso/epidemiología , Sobrepeso/complicaciones , Enfermedades Óseas Metabólicas/epidemiología , Enfermedades Óseas Metabólicas/complicaciones , Osteoporosis/epidemiología , Osteoporosis/complicaciones , Densidad Ósea , Aumento de Peso , Obesidad/complicaciones , Absorciometría de Fotón
12.
Neurochem Res ; 48(10): 3099-3112, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336823

RESUMEN

Purinergic receptor P2X4 (P2X4R) plays an essential role in neuropathic pain. However, the specific mechanism needs to be clarified. Botulinum toxin type A is a neurotoxin produced by Clostridium botulinum type A. This study found that intrathecal injection of botulinum toxin type A produced an excellent analgesic effect in a rat model of chronic constriction sciatic nerve injury and inhibited the activation of P2X4R, microglia, and astrocytes. The administration of a P2X4R activator can up-regulate the expression of P2X4R and eliminate the analgesic effect of intrathecal injection of botulinum toxin type A. In addition, we found that microglia and astrocytes in the spinal cord of rats injected with botulinum toxin type A were reactivated after administration of the P2X4R activator. Our results suggest that intrathecal injection of botulinum toxin type A has an analgesic effect in a rat model of chronic constriction sciatic nerve injury by inhibiting the activation of P2X4R in the spinal cord.


Asunto(s)
Toxinas Botulínicas Tipo A , Neuralgia , Ratas , Masculino , Animales , Toxinas Botulínicas Tipo A/uso terapéutico , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Médula Espinal/metabolismo , Inyecciones Espinales , Analgésicos/uso terapéutico , Analgésicos/metabolismo , Hiperalgesia/metabolismo
13.
Phys Rev Lett ; 130(21): 210801, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295116

RESUMEN

Quantum key distribution (QKD) aims to generate secure private keys shared by two remote parties. With its security being protected by principles of quantum mechanics, some technology challenges remain towards practical application of QKD. The major one is the distance limit, which is caused by the fact that a quantum signal cannot be amplified while the channel loss is exponential with the distance for photon transmission in optical fiber. Here using the 3-intensity sending-or-not-sending protocol with the actively-odd-parity-pairing method, we demonstrate a fiber-based twin-field QKD over 1002 km. In our experiment, we developed a dual-band phase estimation and ultra-low noise superconducting nanowire single-photon detectors to suppress the system noise to around 0.02 Hz. The secure key rate is 9.53×10^{-12} per pulse through 1002 km fiber in the asymptotic regime, and 8.75×10^{-12} per pulse at 952 km considering the finite size effect. Our work constitutes a critical step towards the future large-scale quantum network.


Asunto(s)
Fotones , Física , Femenino , Embarazo , Humanos , Frecuencia Cardíaca
14.
Zhongguo Gu Shang ; 36(6): 591-6, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37366106

RESUMEN

The shoulder joint is the most flexible joint in the body with the largest range of motion, and the movement pattern is more complex. Accurate capture of three-dimensional motion data of the shoulder joint is crucial for biomechanical evaluation. Optical motion capture systems offer a non-invasive and radiation-free method to capture shoulder joint motion data during complex movements, enabling further biomechanical analysis of the shoulder joint. This review provides a comprehensive overview of optical motion capture technology in the context of shoulder joint movement, including measurement principles, data processing methods to reduce artifacts from skin and soft tissues, factors influencing measurement results, and applications in shoulder joint disorders.


Asunto(s)
Articulación del Hombro , Hombro , Humanos , Captura de Movimiento , Fenómenos Biomecánicos , Extremidad Superior , Movimiento , Rango del Movimiento Articular
16.
Front Plant Sci ; 14: 1123707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025132

RESUMEN

Background: The genus Rhododendron (Ericaceae), a species-rich and widely distributed genus of woody plants, is distinguished for the beautiful and diverse flowers. Rhododendron delavayi Franch. and Rhododendron irroratum Franch., are highly attractive species widely distributed in south-west China and abundant new varieties have been selected from their genetic resources. Methods: We constructed chromosome-scale genome assemblies for Rhododendron delavayi and Rhododendron irroratum. Phylogenetic and whole-genome duplication analyses were performed to elucidate the evolutionary history of Rhododendron. Further, different types of gene duplications were identified and their contributions to gene family expansion were investigated. Finally, comprehensive characterization and evolutionary analysis of R2R3-MYB and NBS-encoding genes were conducted to explore their evolutionary patterns. Results: The phylogenetic analysis classified Rhododendron species into two sister clades, 'rhododendrons' and 'azaleas'. Whole-genome duplication (WGD) analysis unveiled only one WGD event that occurred in Rhododendron after the ancestral γ triplication. Gene duplication and gene family expansion analyses suggested that the younger tandem and proximal duplications contributed greatly to the expansion of gene families involved in secondary metabolite biosynthesis and stress response. The candidate R2R3-MYB genes likely regulating anthocyanin biosynthesis and stress tolerance in Rhododendron will facilitate the breeding for ornamental use. NBS-encoding genes had undergone significant expansion and experienced species-specific gain and loss events in Rhododendron plants. Conclusions: The reference genomes presented here will provide important genetic resources for molecular breeding and genetic improvement of plants in this economically important Rhododendron genus.

17.
Plant Divers ; 45(2): 219-228, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37069931

RESUMEN

The T2/RNase gene family is widespread in eukaryotes, and particular members of this family play critical roles in the gametophytic self-incompatibility (GSI) system in plants. Wild diploid strawberry (Fragaria) species have diversified their sexual systems via self-incompatible and self-compatible traits, yet how these traits evolved in Fragaria remains elusive. By integrating the published and de novo assembled genomes and the newly generated RNA-seq data, members of the RNase T2 gene family were systematically identified in six Fragaria species, including three self-incompatible species (Fragaria nipponica, Fragaria nubicola, and Fragaria viridis) and three self-compatible species (Fragaria nilgerrensis, Fragaria vesca, and Fragaria iinumae). In total, 115 RNase T2 genes were identified in the six Fragaria genomes and can be classified into three classes (I-III) according to phylogenetic analysis. The identified RNase T2 genes could be divided into 22 homologous gene sets according to amino acid sequence similarity and phylogenetic and syntenic relationships. We found that extensive gene loss and pseudogenization coupled with small-scale duplications mainly accounted for variations in the RNase T2 gene numbers in Fragaria. Multiple copies of homologous genes were mainly generated from tandem and segmental duplication events. Furthermore, we newly identified five S-RNase genes in three self-incompatible Fragaria genomes, including two in F. nipponica, two in F. viridis, and one in F. nubicola, which fit for typical features of a pistil determinant, including highly pistil-specific expression, highly polymorphic proteins and alkaline isoelectric point (pI), while no S-RNase genes were found in all three self-compatible Fragaria species. Surprisingly, these T2/S-RNase genes contain at least one large intron (>10 kb). This study revealed that the rapid evolution of T2/S-RNase genes within the Fragaria genus could be associated with its sexual mode, and repeated evolution of the self-compatible traits in Fragaria was convergent via losses of S-RNase.

18.
Entropy (Basel) ; 25(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36981311

RESUMEN

Link prediction is a hot issue in information filtering. Link prediction algorithms, based on local similarity indices, are widely used in many fields due to their high efficiency and high prediction accuracy. However, most existing link prediction algorithms are available for unweighted networks, and there are relatively few studies for weighted networks. In the previous studies on weighted networks, some scholars pointed out that links with small weights play a more important role in link prediction and emphasized that weak-ties theory has a significant impact on prediction accuracy. On this basis, we studied the edges with different weights, and we discovered that, for edges with large weights, this weak-ties theory actually does not work; Instead, the weak-ties theory works in the prediction of edges with small weights. Our discovery has instructive implications for link predictions in weighted networks.

20.
Entropy (Basel) ; 26(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38275487

RESUMEN

Malicious attacks can cause significant damage to the structure and functionality of complex networks. Previous research has pointed out that the ability of networks to withstand malicious attacks becomes weaker when networks are coupled. However, traditional research on improving the robustness of networks has focused on individual low-order or higher-order networks, lacking studies on coupled networks with higher-order and low-order networks. This paper proposes a method for optimizing the robustness of coupled networks with higher-order and low-order based on a simulated annealing algorithm to address this issue. Without altering the network's degree distribution, the method rewires the edges, taking the robustness of low-order and higher-order networks as joint optimization objectives. Making minimal changes to the network, the method effectively enhances the robustness of coupled networks. Experiments were conducted on Erdos-Rényi random networks (ER), scale-free networks (BA), and small-world networks (SW). Finally, validation was performed on various real networks. The results indicate that this method can effectively enhance the robustness of coupled networks with higher-order and low-order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA