Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Neurochem Res ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026086

RESUMEN

Brain injury caused by stroke has a high rate of mortality and remains a major medical challenge worldwide. In recent years, there has been significant attention given to the use of human Umbilical cord-derived Mesenchymal Stem Cells (hUC-MSCs) for the treatment of stroke in different adult and neonate animal models of stroke. However, using hUC-MSCs by systemic administration to treat ischemic stroke has not been investigated sufficiently. In this study, we conducted various experiments to explore the neuroprotection of hUC-MSCs in rats. Our findings demonstrate that an intravenous injection of a high dose of hUC-MSCs at 2 × 10^7 cells/kg markedly ameliorated brain injury resulting from ischemic stroke. This improvement was observed one day after inducing transient middle cerebral artery occlusion (MCAO) and subsequent reperfusion in rats. Notably, the efficacy of this single administration of hUC-MSCs surpassed that of edaravone, even when the latter was used continuously over three days. Mechanistically, secretory factors derived from hUC-MSCs, such as HGF, BDNF, and TNFR1, ameliorated the levels of MDA and T-SOD to regulate oxidative stress. In particular, TNFR1 also improved the expression of NQO-1 and HO-1, important proteins associated with oxidative stress. More importantly, TNFR1 played a significant role in reducing inflammation by modulating IL-6 levels in the blood. Furthermore, TNFR1 was observed to influence the permeability of the blood-brain barrier (BBB) as demonstrated in the evan's blue experiment and protein expression of ZO-1. This study represented a breakthrough in traditional methods and provided a novel strategy for clinical medication and trials.

2.
Cell Mol Biol Lett ; 29(1): 91, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918694

RESUMEN

Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.


Asunto(s)
Cobre , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Cobre/metabolismo , Animales , Muerte Celular , Ciclo del Ácido Cítrico
3.
NPJ Biofilms Microbiomes ; 10(1): 5, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245554

RESUMEN

A high-fat diet (HFD) may be linked to an increased colorectal cancer (CRC) risk. Stem cell proliferation and adipokine release under inflammatory and obese conditions are the main factors regulating CRC progression. Furthermore, alterations in intestinal flora have been linked to tumorigenesis and tumour progression. However, whether a HFD can promote CRC occurrence by altering intestinal flora remains unclear. The objective of this study was to identify bacterial strains enriched by a HFD and investigate the association and mechanism by which a HFD and bacterial enrichment promote CRC occurrence and development. In this study, the intestinal microbiota of mice was assessed using 16S rRNA and metagenomic sequencing. Serum metabolites of HFD-fed mice were assessed using tandem liquid chromatography-mass spectrometry. CRC cell lines and organoids were co-cultured with Coriobacteriaceae to evaluate the effect of these bacteria on the CPT1A-ERK signalling pathway. We found that Coriobacteriaceae were enriched in the colons of HFD-fed mice. An endogenous Coriobacteriaceae strain, designated as Cori.ST1911, was successfully isolated and cultured from the stools of HFD-fed mice, and the tumorigenic potential of Cori.ST1911 in CRC was validated in several CRC mouse models. Furthermore, Cori.ST1911 increased acylcarnitine levels by activating CPT1A, demonstrating the involvement of the CPT1A-ERK axis. We also found that the endogenous Lactobacillus strain La.mu730 can interfere with Cori.ST1911 colonisation and restore gut barrier function. In conclusion, we identified a novel endogenous intestinal Coriobacteriaceae, Cori.ST1911, which might lead to a new gut microbiota intervention strategy for the prevention and treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , ARN Ribosómico 16S/genética , Carcinogénesis , Microbioma Gastrointestinal/fisiología , Neoplasias Colorrectales/etiología
4.
Cell Mol Biol Lett ; 28(1): 85, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37872526

RESUMEN

BACKGROUND: Ubiquitin-proteasome-system-mediated clearance of misfolded proteins is essential for cells to maintain proteostasis and reduce the proteotoxicity caused by these aberrant proteins. When proteasome activity is inadequate, ubiquitinated proteins are sorted into perinuclear aggresomes, which is a significant defense mechanism employed by cells to combat insufficient proteasome activity, hence mitigating the proteotoxic crisis. It has been demonstrated that phosphorylation of SQSTM1 is crucial in regulating misfolded protein aggregation and autophagic degradation. Although SQSTM1 S403 phosphorylation is essential for the autophagic degradation of ubiquitinated proteins, its significance in proteasome inhibition-induced aggresome formation is yet unknown. Herein, we investigated the influence of SQSTM1 S403 phosphorylation on the aggresome production of ubiquitinated proteins during proteasome suppression. METHODS: We examined the phosphorylation levels of SQSTM1 S403 or T269/S272 in cells after treated with proteasome inhibitors or/and autophagy inhibitors, by western blot and immunofluorescence. We detected the accumulation and aggresome formation of ubiquitinated misfolded proteins in cells treated with proteasome inhibition by western blot and immunofluorescence. Furthermore, we used SQSTM1 phosphorylation-associated kinase inhibitors and mutant constructs to confirm the regulation of different SQSTM1 phosphorylation in aggresome formation. We examined the cell viability using CCK-8 assay. RESULTS: Herein, we ascertained that phosphorylation of SQSTM1 S403 did not enhance the autophagic degradation of ubiquitinated proteins during proteasome inhibition. Proteasome inhibition suppresses the phosphorylation of SQSTM1 S403, which facilitated the aggresome production of polyubiquitinated proteins. Interestingly, we found proteasome inhibition-induced SQSTM1 T269/S272 phosphorylation inhibits the S403 phosphorylation. Suppressing S403 phosphorylation rescues the defective aggresome formation and protects cells from cell death caused by unphosphorylated SQSTM1 (T269/S272). CONCLUSIONS: This study shows that inhibition of SQSTM1 S403 phosphorylation facilitates the aggresome formation of ubiquitinated proteins during proteasome dysfunction. SQSTM1 T269/S272 phosphorylation inhibits the S403 phosphorylation, boosting the aggresome formation of ubiquitinated protein and shielding cells from proteotoxic crisis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas Ubiquitinadas , Fosforilación , Proteína Sequestosoma-1 , Proteínas Ubiquitinadas/metabolismo , Autofagia , Ubiquitina/metabolismo
5.
IEEE Trans Cybern ; 53(12): 7824-7833, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37015604

RESUMEN

This article investigates the prescribed performance control (PPC) problem for a class of nonlinear strict-feedback systems with sensor/actuator faults. A shifting function is introduced to modify the output tracking error generated by the practically measured system state, based on which an improved PPC method is proposed to achieve the convergence of output tracking error to the prescribed region, and this convergence is shown to be independent of the initial tracking condition and insusceptible to sensor/actuator faults. The faults-induced uncertainties together with the nonlinear dynamics are compensated by involving a radial basis function neural network (RBFNN) to make the controller robust adaptive fault-tolerant without prior knowledge of fault coefficients. Via Lyapunov stability analysis, it is proven that all signals in the closed-loop system are semiglobally uniformly ultimately bounded. The effectiveness and superiority of the method are demonstrated by two simulation examples.

6.
Free Radic Biol Med ; 202: 110-120, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997100

RESUMEN

Dysfunction of the ubiquitin‒proteasome system can induce sustained endoplasmic reticulum stress (ERS) and subsequent cell death. However, malignant cells have evolved multiple mechanisms to evade sustained ERS. Therefore, identification of the mechanisms through which tumor cells develop resistance to ERS is important for the therapeutic exploitation of these cells for drug-resistant tumors. Herein, we found that proteasome inhibitors could induce ERS, activate ferroptosis signaling, and thereby induce the adaptive tolerance of tumor cells to ERS. Mechanistically, the activation of ferroptosis signaling was found to promote the formation and secretion of exosomes containing misfolded and unfolded proteins, which resulted in rescuing ERS and promoting tumor cell survival. The inhibition of ferroptosis signaling synergized with bortezomib, a clinically used proteasome inhibitor, to suppress the viability of hepatocellular carcinoma cells in vitro and in vivo. The present findings reveal that ERS resistance can be driven by an ERS-ferroptosis signaling-exosome pathway and have important clinical implications for intracellular signaling, ER homeostasis and drug-resistant cancer therapy.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Ferroptosis/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Estrés del Retículo Endoplásmico/fisiología
7.
Cancer Biol Med ; 20(1)2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36647780

RESUMEN

Circadian rhythms are natural rhythms that widely exist in all creatures, and regulate the processes and physiological functions of various biochemical reactions. The circadian clock is critical for cancer occurrence and progression. Its function is regulated by metabolic activities, and the expression and transcription of various genes. This review summarizes the composition of the circadian clock; the biological basis for its function; its relationship with, and mechanisms in, cancer; its various functions in different cancers; the effects of anti-tumor treatment; and potential therapeutic targets. Research in this area is expected to advance understanding of circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) in tumor diseases, and contribute to the development of new anti-tumor treatment strategies.


Asunto(s)
Relojes Circadianos , Neoplasias , Humanos , Ritmo Circadiano/genética
8.
Cell Transplant ; 31: 9636897221139734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36448598

RESUMEN

Recent studies have shown that the use of mesenchymal stem/stromal cells (MSCs) may be a promising strategy for treating spinal cord injury (SCI). This study aimed to explore the effectiveness of human umbilical cord-derived MSCs (hUC-MSCs) with different administration routes and dosages on SCI rats. Following T10-spinal cord contusion in Sprague-Dawley rats (N = 60), three different dosages of hUC-MSCs were intrathecally injected into rats (SCI-ITH) after 24 h. Intravenous injection of hUC-MSCs (SCI-i.v.) and methylprednisolone reagent (SCI-PC) were used as positive controls (N = 10/group). A SCI control group without treatment and a sham operation group were injected with Multiple Electrolyte Injection solution. The locomotor function was assessed by Basso Beattie Bresnahan (BBB) rating score, magnetic resonance imaging (MRI), histopathology, and immunofluorescence. ELISA was conducted to further analyze the nerve injury and inflammation in the rat SCI model. Following SCI, BBB scores were significantly lower in the SCI groups compared with the sham operation group, but all the treated groups showed the recovery of hind-limb motor function, and rats receiving the high-dose intrathecal injection of hUC-MSCs (SCI-ITH-H) showed improved outcomes compared with rats in hUC-MSCs i.v. and positive control groups. Magnetic resonance imaging revealed significant edema and spinal cord lesion in the SCI groups, and significant recovery was observed in the medium and high-dose hUC-MSCs ITH groups. Histopathological staining showed that the necrotic area in spinal cord tissue was significantly reduced in the hUC-MSCs ITH-H group, and the immunofluorescence staining confirmed the neuroprotection effect of hUC-MSCs infused on SCI rats. The increase of inflammatory cytokines was repressed in hUC-MSCs ITH-H group. Our results confirmed that hUC-MSC administered via intrathecal injection has dose-dependent neuroprotection effect in SCI rats.


Asunto(s)
Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/terapia , Factores Inmunológicos
9.
Mol Metab ; 65: 101587, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36055576

RESUMEN

BACKGROUND: Pyroptosis has been attracting much attention recently. We have briefly compared its differences and similarities with other programmed deaths and the process of its study. With further exploration of the caspase family, including caspase-1/3/4/5/8/11, new insights into the molecular pathways of action of pyroptosis have been gained. It is also closely related to the development of many cancers, which at the same time provides us with new ideas for the treatment of cancer. SCOPE OF REVIEW: We describe what is known regarding the impact of pyroptosis on anticancer immunity and give insight into the potential of harnessing pyroptosis as a tool and applying it to novel or existing anticancer strategies. MAJOR CONCLUSIONS: Pyroptosis, a caspase-dependent cell death, causes pore formation, cell swelling, rupture of the plasma membrane, and release of all intracellular contents. The role of pyroptosis in cancer is an extremely complex issue. There is growing evidence that tumor pyroptosis has anti-tumor and pro-tumor roles. It should be discussed in different cancer periods according to the characteristics of cancer occurrence and development. In cancer treatment, pyroptosis provides us with some potential new targets. For the existing drugs, the study of pyroptosis also helps us make better use of existing drugs for anticancer treatment. Immunotherapy is a hot research direction in the field of cancer treatment.


Asunto(s)
Neoplasias , Piroptosis , Caspasas/metabolismo , Membrana Celular , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Piroptosis/fisiología
10.
Biomed Res Int ; 2022: 6209047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872845

RESUMEN

Materials and Methods: Three hundred sixty (n = 360) broiler chickens were equally divided into control (C) and thiram (T) groups. Furthermore, the C and T groups were dividedinto 8-, 9-, 11-, and 13-day-old chickens. Results: Clinically, it was observed that broiler chickens of group T had abnormal posture, gait, and lameness, and histopathological results revealed dead and abnormal chondrocytes of T group on day 6. Real-time qPCR results showed that HDAC1, MTA1, H4, and PCNA genes were significantly expressed (P < 0.05). HDAC1 was upregulated on days 1, 2, 4, and 6 (P < 0.01); MTA1 was upregulated on days 1 and 2 (P < 0.01); H4 was upregulated on days 2 and 4 (P < 0.01), and PCNA was downregulated on days 1, 2, and 4 (P < 0.01). Furthermore, IHC results of HDAC1 protein were significantly (P < 0.01) expressed in proliferative zone of day 1 and hypertrophic zone of day 6. MTA1 protein was significantly (P < 0.01) expressed on days 1, 2, and 6 in all zones, except prehypertrophic zone of day 2. Conclusion: In conclusion, the mRNA expressions of HDAC1, MTA1, H4, and PCNA were differentially expressed in the chondrocytes of thiram-induced TD chickens. HDAC1 and MTA1 protein expression found involved and responsible in the abnormal chondrocytes' proliferation of broiler chicken.


Asunto(s)
Osteocondrodisplasias , Enfermedades de las Aves de Corral , Animales , Proliferación Celular/genética , Pollos/genética , Placa de Crecimiento/metabolismo , Osteocondrodisplasias/inducido químicamente , Osteocondrodisplasias/genética , Enfermedades de las Aves de Corral/inducido químicamente , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/patología , Antígeno Nuclear de Célula en Proliferación/genética , Tiram/toxicidad , Tibia/patología
11.
Cell Death Dis ; 13(7): 615, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840557

RESUMEN

Aggresome formation is a protective cellular response to counteract proteasome dysfunction by sequestering misfolded proteins and reducing proteotoxic stress. Autophagic degradation of the protein aggregates is considered to be a key compensating mechanism for balancing proteostasis. However, the precise role of autophagy in proteasome inhibition-induced aggresome biogenesis remains unclear. Herein, we demonstrate that in the early stage of proteasome inhibition, the maturation of the autophagosome is suppressed, which facilitates aggresome formation of misfolded proteins. Proteasome inhibition-induced phosphorylation of SQSTM1 T269/S272 inhibits its autophagic receptor activity and promotes aggresome formation of misfolded proteins. Inhibiting SQSTM1 T269/S272 phosphorylation using Doramapimod aggravates proteasome inhibitor-mediated cell damage and tumor suppression. Taken together, our data reveal a negative effect of autophagy on aggresome biogenesis and cell damage upon proteasome inhibition. Our study suggests a novel therapeutic intervention for proteasome inhibitor-mediated tumor treatment.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas Ubiquitinadas , Autofagia , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Proteínas Ubiquitinadas/metabolismo
12.
Biosci Rep ; 42(7)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35506372

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most prevalent malignant cancers worldwide. Immune-related long non-coding RNAs (IRlncRNAs) are proved to be essential in the development and progression of carcinoma. The purpose of the present study was to develop and validate a prognostic IRlncRNA signature for CRC patients. METHODS: Gene expression profiles of CRC samples were downloaded from The Cancer Genome Atlas (TCGA) database. Immune-related genes were obtained from the ImmPort database and were used to identify IRlncRNA by correlation analysis. Through LASSO Cox regression analyses, a prognostic signature was constructed. Functional enrichment analysis was performed by gene set enrichment analysis (GSEA). TIMER2.0 web server and tumor immune dysfunction and exclusion (TIDE) algorithm were employed to analyze the association between our model and tumor-infiltrating immune cells and immunotherapy response. The expression levels of IRlncRNAs in cell lines were detected by quantitative real-time PCR (qPCR). RESULTS: A 9-IRlncRNA signature was developed by a LASSO Cox proportional regression model. Based on the signature, CRC patients were divided into high- and low-risk groups with different prognoses. GSEA results indicated that patients in high-risk group were associated with cancer-related pathways. In addition, patients in low-risk group were found to have more infiltration of anti-tumor immune cells and might show a favorable response to immunotherapy. Finally, the result of qPCR revealed that most IRlncRNAs were differently expressed between normal and tumor cell lines. CONCLUSION: The constructed 9-IRlncRNA signature has potential to predict the prognosis of CRC patients and may be helpful to guide personalized immunotherapy.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Humanos , Estimación de Kaplan-Meier , Modelos de Riesgos Proporcionales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Riesgo
13.
J Cell Physiol ; 237(5): 2574-2588, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35312067

RESUMEN

Chronic high salt intake is one of the leading causes of hypertension. Salt activates the release of the key neurotransmitters in the hypothalamus such as vasopressin to increase blood pressure, and neuropepetide Y (NPY) has been implicated in the modulation of vasopressin levels. NPY in the hypothalamic arcuate nucleus (Arc) is best known for its control in appetite and energy homeostasis, but it is unclear whether it is also involved in the development of salt-induced hypertension. Here, we demonstrate that wild-type mice given 2% NaCl salt water for 8 weeks developed hypertension which was associated with marked downregulation of NPY expression in the hypothalamic Arc as demonstrated in NPY-GFP reporter mice as well as by in situ hybridization analysis. Furthermore, salt intake activates neurons in the hypothalamic paraventricular nucleus (PVN) where mRNA expression of brain-derived neurotrophic factor (BDNF) and vasopressin was found to be upregulated, leading to elevated serum vasopressin levels. This finding suggests an inverse correlation between the Arc NPY level and expression of vasopressin and BDNF in the PVN. Specific restoration of NPY by injecting AAV-Cre recombinase into the Arc only of the NPY-targeted mutant mice carrying a loxP-flanked STOP cassette reversed effects of salt intake on vasopressin and BDNF expression, leading to a normalization of salt-dependent blood pressure. In summary, our study uncovers an important Arc NPY-originated neuronal circuitry that could sense and respond to peripheral electrolyte signals and thereby regulate hypertension via vasopressin and BDNF in the PVN.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Hipertensión , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Hipertensión/inducido químicamente , Ratones , Neuropéptido Y/metabolismo , Cloruro de Sodio , Cloruro de Sodio Dietético , Vasopresinas
14.
Biochem Biophys Res Commun ; 600: 60-66, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35193074

RESUMEN

p38δ is a member of p38 mitogen-activated protein kinases (MAPKs) family that displays cell- and tissue-specific expression patterns. Recent studies demonstrate that p38δ is centrally involved in several pathologic events, such as diabetes, neurodegeneration diseases, inflammatory diseases, and cancer, and suggest that it may be a potential target for diagnosis and therapy of specific diseases. A nanobody is a new type of antibody that exhibits high antigen-binding activity, solubility, stability, and easy production. This study utilized phage display to isolate nanobodies specifically against p38δ from a fully synthetic nanobody library. Two of them, nanobodies Nb13-6 and Nb13-1, display high binding activity to p38δ, less cross-reactivity with other p38 MAPKs, and high thermal and pH stabilities. Modeling and docking analysis indicated that Nb13-6 is mostly linked to the activation loop of p38δ. Furthermore, detailed studies revealed that Nb13-6 inhibited the protein kinase activity of p38δ and the growth of cancer cells. Therefore, this study provides p38δ-specific nanobodies that are promisingly exploited for diagnosing and treating p38δ-associated diseases.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Anticuerpos de Dominio Único , Proteína Quinasa 13 Activada por Mitógenos , Fosforilación , Anticuerpos de Dominio Único/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos
15.
FASEB J ; 36(1): e22121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34951719

RESUMEN

Protein aggregation and degradation via autophagy (aggrephagy) are major strategies adopted by cells to remove misfolded polypeptides when there is proteasome dysfunction. The functional protein complex consisting of heat shock protein 70 (Hsp70), cochaperone ubiquitin ligase carboxyl-terminal of Hsp70/Hsp90 interacting protein (CHIP), and co-chaperone Bcl-2-associated athanogene 3 (BAG3) has been associated with the activation of protein aggregation. However, data on the mechanisms of action of the complex in the protein degradation remains scant. Here, we report that upon proteasome stress, the M2 isoform of pyruvate kinase (PKM2) promotes the aggregation of ubiquitinated proteins and its knockout or knockdown aggravates the sensitivity of cells to proteasome inhibitors. Besides, following proteasome inhibition, PKM2 promotes the interaction of BAG3 with CHIP and HSP70. Interestingly, re-expression of loss-of-function mutants in PKM2-knockout cells showed that the regulatory function of PKM2 in this progress does not depend on the activity of glycolytic enzymes or protein kinases. Taken together, these findings demonstrate that PKM2 mediates the formation of the CHIP-HSP70-BAG3 protein complex and promotes the aggregation of ubiquitinated misfolded proteins, thus compensating for proteasome stress in cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Complejos Multiproteicos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Piruvato Quinasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Células Hep G2 , Humanos , Complejos Multiproteicos/genética , Complejo de la Endopetidasa Proteasomal/genética , Piruvato Quinasa/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Ubiquitinadas/genética
16.
Cell Death Discov ; 7(1): 207, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34365464

RESUMEN

The Hippo/YAP pathway plays an important role in the development of cancers. Previous studies have reported that bile acids can activate YAP (Yes Associated Protein) to promote tumorigenesis and tumor progression. Ursodeoxycholic acid (UDCA) is a long-established old drug used for cholestasis treatment. So far, the effect of UDCA on YAP signaling in colorectal cancer (CRC) is not well defined. This study means to explore relationship of UDCA and YAP in CRC. UDCA suppressed YAP signaling by activating the membrane G-protein-coupled bile acid receptor (TGR5). TGR5 mainly regulated cAMP/PKA signaling pathway to inhibit RhoA activity, thereby suppressing YAP signaling. Moreover, the restoration of YAP expression alleviated the inhibitory effect of UDCA on CRC cell proliferation. In AOM/DSS-induced CRC model, UDCA inhibited tumor growth in a concentration-dependent manner and decreased expression of YAP and Ki67. UDCA plays a distinguished role in regulating YAP signaling and CRC growth from the primary bile acids and partial secondary bile acids, demonstrating the importance of maintaining normal intestinal bile acid metabolism in cancer patients. It also presents a potential therapeutic intervention for CRC.

17.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188618, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34428515

RESUMEN

Serotonin (5-hydroxytryptamine, 5-HT) metabolism has long been linked to tumorigenesis and tumor progression. Numerous studies have shown the functions of 5-HT and its metabolites in the regulation of tumor biological processes like cell proliferation, invasion, metastasis, tumor angiogenesis and immunomodulatory through multi-step complex mechanisms. Reprogramming of 5-HT metabolism has been revealed in various tumors paving way for development of drugs that target enzymes, metabolites or receptors involved in 5-HT metabolic pathway. However, information on the role of 5-HT metabolism in cancer is scanty. This review briefly describes the main metabolic routes of 5-HT, the role of 5-HT metabolism in cancer and systematically summarizes the most recent advances in 5-HT metabolism-targeted cancer therapy.


Asunto(s)
Neoplasias/metabolismo , Serotonina/metabolismo , Humanos
18.
Cancer Sci ; 112(7): 2664-2678, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33934451

RESUMEN

Immunotherapy targeting the PD-L1/PD-1 pathway is a novel type of clinical cancer treatment, but only small subsets of patients can benefit from it because of multiple factors. PD-L1/PD-1 expression is a biomarker for predicting the efficacy of anti-PD-L1/PD-1 therapy, which highlights the importance of understanding the regulatory mechanisms of PD-L1 expression in cancer cells. Casp8 is an apical caspase protease involved in mediating cell apoptosis, but it also has multiple nonapoptotic functions. Casp8 mutations are associated with increased risks of cancer, and low expression of Casp8 is closely connected with poor prognosis in patients with cancer. In addition, mutations of Casp8 in lymphocytes also lead to human immunodeficiency, thereby causing dysfunction of the innate immune system, but the roles of Casp8 in antitumor immunity remain unclear. Here, we found that knocking down Casp8 in mouse melanoma cells promoted tumor progression in an immune system-dependent manner. Mechanistically, Casp8 induced PD-L1 degradation by upregulating TNFAIP3 (A20) expression, a ubiquitin-editing enzyme that results in PD-L1 ubiquitination. In addition, compared with Casp8fl/fl mice, mice with conditional deletion of Casp8 in natural killer (NK) cells (Ncr1iCre/+ Casp8fl/fl mice) showed a decreased frequency of IFN-γ+ and CD107a+ NK cells but an increased frequency of PD-1+ and CTLA-4+ NK cells. Melanoma cells with Casp8 knocked down exhibited sensitivity to anti-PD-1 or anti-CTLA-4 antibody treatments, particularly in Ncr1iCre/+Casp8fl/fl mice. Together, the results indicate that Casp8 induces PD-L1 degradation by upregulating A20 expression and that decreased Casp8 expression is a potential biomarker for predicting the sensitivity to anti-PD-L1/PD-1 immunotherapy.


Asunto(s)
Antígeno B7-H1/metabolismo , Caspasa 8/fisiología , Inmunoterapia Adoptiva/métodos , Melanoma/terapia , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antígeno B7-H1/genética , Antígeno CTLA-4/metabolismo , Caspasa 8/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación hacia Abajo , Proteínas Activadoras de GTPasa/metabolismo , Interferón gamma/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Melanoma/inmunología , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , FN-kappa B/metabolismo , Ubiquitinación , Regulación hacia Arriba
19.
J Exp Clin Cancer Res ; 40(1): 173, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006301

RESUMEN

BACKGROUND: Serotonin signaling has been associated with tumorigenesis and tumor progression. Targeting the serotonin transporter to block serotonin cellular uptake confers antineoplastic effects in various tumors, including colon cancer. However, the antineoplastic mechanism of serotonin transporter inhibition and serotonin metabolism alterations in the absence of serotonin transporter have not been elucidated, especially in colon cancer, which might limit anti-tumor effects associating with targeting serotonin transporter. METHODS: The promotion in the uptake and catabolism of extracellular tryptophan and targeting serotonin transporter was detected by using quantitative reverse-transcription polymerase chain reaction, western blotting and liquid chromatography tandem mass spectrometry. Western blotting Immunoprecipitation and immunofluorescence was utilized to research the serotonylation of mTOR by serotonin and serotonin transporter inhibition. The primary mouse model, homograft model and tissue microarry was used to explore the tryptophan pathway in colon cancer. The cell viability assay, western blotting, xenograft and primary colon cancer mouse model were used to identify whether the combination of sertraline and tryptophan restriction had a synergistic effect. RESULTS: Targeting serotonin transporter through genetic ablation or pharmacological inhibition in vitro and in vivo induced a compensatory effect by promoting the uptake and catabolism of extracellular tryptophan in colon cancer. Mechanistically, targeting serotonin transporter suppressed mTOR serotonylation, leading to mTOR inactivation and increased tryptophan uptake. In turn, this process promoted serotonin biosynthesis and oncogenic metabolite kynurenine production through enhanced tryptophan catabolism. Tryptophan deprivation, or blocking its uptake by using trametinib, a MEK inhibitor, can sensitize colon cancer to selective serotonin reuptake inhibitors. CONCLUSIONS: The present study elucidated a novel feedback mechanism involved in the regulation of serotonin homeostasis and suggested innovative strategies for selective serotonin reuptake inhibitors-based treatment of colon cancer.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Triptófano/metabolismo , Triptófano/uso terapéutico , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Transducción de Señal , Transfección , Triptófano/farmacología
20.
Exp Lung Res ; 47(5): 226-238, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33749474

RESUMEN

PURPOSE: This study was prospectively designed to investigate the effects of different concentrations of mesenchymal stem cells treatment on respiratory mechanics, oxygenation, hemodynamics and inflammatory response in LPS-induced acute respiratory distress syndrome (ARDS) rat model. Methods: One hundred and twenty six LPS-induced ARDS model rats (weighted 200-220 g) were randomly divided into three groups: 1) Control group (N = 42); 2) low-dose hUC-MSC treatment group (MSC group 1, 1x107 cell/kg, N = 42); 3) high-dose hUC-MSC treatment group (MSC group 2, 2x107 cell/kg, N = 42), sham operation group as healthy group (N = 15). The rats were observed closely for 24 hours after hUC-MSC treatment, and the survival rate was calculated. At 24 hours, all rats were tested for hemodynamics, blood gas analysis, heart, lung, liver and kidney functions, inflammatory factors detection in blood samples and broncho-alveolar lavage fluid (BALF). The lung tissue of the rats was collected for HE staining analysis. Results: After LPS injection, ARDS was obvious in all LPS-infused rat groups, consistent with severe acute lung injury and high death rate. However, compared with the control group, a single intravenous injection hUC-MSC at dose of 1 × 107 cells/kg (low dose group) and 2 × 107 cells/kg (high dose group) reduced the mortality of rats with LPS-induced ARDS, as well as improving the lung function, increased the arterial oxygen pressure, improved the heart function, and reduced the levels of inflammatory factors including IL-1ß, IL-6, and TNF-α. In addition, the high dose MSC group showed better lung injury therapeutic effects than the low dose MSC group. Data from this study demonstrated that injection of hUC-MSC had a significant therapeutic effect in treating the rat model of LPS-induced ARDS and multiple organ function injury.


Asunto(s)
Lesión Pulmonar Aguda , Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Animales , Ratas , Lipopolisacáridos , Pulmón , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...