Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hear Res ; 442: 108935, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38113793

RESUMEN

Sound information is transduced from mechanical vibration to electrical signals in the cochlea, conveyed to and further processed in the brain to form auditory perception. During the process, spiral ganglion neurons (SGNs) are the key cells that connect the peripheral and central auditory systems by receiving information from hair cells in the cochlea and transmitting it to neurons of the cochlear nucleus (CN). Decades of research in the cochlea greatly improved our understanding of SGN function under normal and pathological conditions, especially about the roles of different subtypes of SGNs and their peripheral synapses. However, it remains less clear how SGN central terminals or auditory nerve (AN) synapses connect to CN neurons, and ultimately how peripheral pathology links to structural alterations and functional deficits in the central auditory nervous system. This review discusses recent progress about the morphological and physiological properties of different subtypes of AN synapses and associated postsynaptic CN neurons, their changes during aging, and the potential mechanisms underlying age-related hearing loss.


Asunto(s)
Núcleo Coclear , Pérdida Auditiva , Humanos , Núcleo Coclear/patología , Nervio Coclear , Neuronas/patología , Sinapsis/patología , Ganglio Espiral de la Cóclea/patología , Cóclea/fisiología
2.
Neuroscience ; 514: 25-37, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738912

RESUMEN

Cellular morphology and synaptic configuration are key determinants of neuronal function and are often modified under pathological conditions. In the first nucleus of the central auditory system, the cochlear nucleus (CN), principal bushy neurons specialize in processing temporal information of sound critical for hearing. These neurons alter their physiological properties during aging that contribute to age-related hearing loss (ARHL). The structural basis of such changes remains unclear, especially age-related modifications in their dendritic morphology and the innervating auditory nerve (AN) synapses. Using young (2-5 months) and aged (28-33 months) CBA/CaJ mice of either sex, we filled individual bushy neurons with fluorescent dye in acute brain slices to characterize their dendritic morphology, followed by immunostaining against vesicular glutamate transporter 1 (VGluT1) and calretinin (CR) to identify innervating AN synapses. We found that dendritic morphology of aged bushy neurons had significantly reduced complexity, suggesting age-dependent dendritic degeneration, especially in neurons with predominantly non-CR-expressing synapses on the soma. These dendrites were innervated by AN bouton synapses, which were predominantly non-CR-expressing in young mice but had increased proportion of CR-expressing synapses in old mice. While somatic AN synapses degenerated substantially with age, as quantified by VGluT1-labeled puncta volume, no significant difference was observed in the total volume of dendritic synapses between young and old mice. Consequently, synaptic density on dendrites was significantly higher in old mice. The findings suggest that dendritic degeneration and altered synaptic innervation in bushy neurons during aging may underlie their changed physiological activity and contribute to the development of ARHL.


Asunto(s)
Núcleo Coclear , Pérdida Auditiva , Animales , Ratones , Nervio Coclear , Ratones Endogámicos CBA , Neuronas/fisiología , Sinapsis/fisiología , Masculino , Femenino
3.
Channels (Austin) ; 16(1): 173-184, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35949058

RESUMEN

The congenital long QT syndrome (LQTS), one of the most common cardiac channelopathies, is characterized by delayed ventricular repolarization underlying prolongation of the QT interval of the surface electrocardiogram. LQTS is caused by mutations in genes coding for cardiac ion channels or ion channel-associated proteins. The major therapeutic approach to LQTS management is beta blocker therapy which has been shown to be effective in treatment of LQTS variants caused by mutations in K+ channels. However, this approach has been questioned in the treatment of patients identified as LQTS variant 3(LQT3) patients who carry mutations in SCN5A, the gene coding for the principal cardiac Na+ channel. LQT3 mutations are gain of function mutations that disrupt spontaneous Na+ channel inactivation and promote persistent or late Na+ channel current (INaL) that delays repolarization and underlies QT prolongation. Clinical investigation of patients with the two most common LQT3 mutations, the ΔKPQ and the E1784K mutations, found beta blocker treatment a useful therapeutic approach for managing arrhythmias in this patient population. However, there is little experimental data that reveals the mechanisms underlying these antiarrhythmic actions. Here, we have investigated the effects of the beta blocker propranolol on INaL expressed by ΔKPQ and E1784K channels in induced pluripotent stem cells derived from patients carrying these mutations. Our results indicate that propranolol preferentially inhibits INaL expressed by these channels suggesting that the protective effects of propranolol in treating LQT3 patients is due in part to modulation of INaL.


Asunto(s)
Síndrome de QT Prolongado , Células Madre Pluripotentes , Arritmias Cardíacas/genética , Humanos , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Células Musculares/metabolismo , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Células Madre Pluripotentes/metabolismo , Propranolol/farmacología , Propranolol/uso terapéutico , Canales de Sodio
4.
J Neurosci ; 42(13): 2729-2742, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35165172

RESUMEN

Calretinin (CR) is a major calcium binding protein widely expressed in the CNS. However, its synaptic function remains largely elusive. At the auditory synapse of the endbulb of Held, CR is selectively expressed in different subtypes. Combining electrophysiology with immunohistochemistry, we investigated the synaptic transmission at the endbulb of Held synapses with and without endogenous CR expression in mature CBA/CAJ mice of either sex. Two synapse subtypes showed similar basal synaptic transmission, except a larger quantal size in CR-expressing synapses. During high-rate stimulus trains, CR-expressing synapses showed improved synaptic efficacy with significantly less depression and lower asynchronous release, suggesting more efficient exocytosis than non-CR-expressing synapses. Conversely, CR-expressing synapses had a smaller readily releasable pool size, which was countered by higher release probability and faster synaptic recovery to support sustained release during high-rate activity. EGTA-AM treatment did not change the synaptic transmission of CR-expressing synapses, but reduced synaptic depression and decreased asynchronous release at non-CR-expressing synapses, suggesting that CR helps to minimize calcium accumulation during high-rate activity. Both synapses express parvalbumin, another calcium-binding protein with slower kinetics and higher affinity than CR, but not calbindin. Furthermore, CR-expressing synapses only express the fast isoform of vesicular glutamate transporter 1 (VGluT1), while most non-CR-expressing synapses express both VGluT1 and the slower VGluT2, which may underlie their lagged synaptic recovery. The findings suggest that, paired with associated synaptic machinery, differential CR expression regulates synaptic efficacy among different subtypes of auditory nerve synapses to accomplish distinctive physiological functions in transmitting auditory information at high rates.SIGNIFICANCE STATEMENT CR is a major calcium-binding protein in the brain. It remains unclear how endogenous CR impacts synaptic transmission. We investigated the question at the large endbulb of Held synapses with selective CR expression and found that CR-expressing and non-CR-expressing synapses had similar release properties under basal synaptic transmission. During high-rate activity, however, CR-expressing synapses showed improved synaptic efficacy with less depression, lower asynchronous release, and faster recovery. Furthermore, CR-expressing synapses use exclusive VGluT1 to refill synaptic vesicles, while non-CR-expressing synapses use both VGluT1 and the slower isoform of VGluT2. Our findings suggest that CR may play significant roles in promoting synaptic efficacy during high-rate activity, and selective CR expression can differentially impact signal processing among different synapses.


Asunto(s)
Sinapsis , Transmisión Sináptica , Animales , Calbindina 2/metabolismo , Ratones , Ratones Endogámicos CBA , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo
5.
J Physiol ; 599(6): 1833-1854, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33450070

RESUMEN

KEY POINTS: Sound information is transmitted by different subtypes of spiral ganglion neurons (SGN) from the ear to the brain. Selective damage of SGN peripheral synapses (cochlear synaptopathy) is widely recognized as one of the primary mechanisms of hearing loss, whereas the mechanisms at the SGN central synapses remain unclear. We report that different subtypes of SGN central synapses converge at different ratios onto individual target cochlear nucleus neurons with distinct physiological properties, and show biased morphological and physiological changes during age-related hearing loss (ARHL). The results reveal a new dimension in cochlear nucleus neural circuitry that systematically reassembles and processes auditory information from different SGN subtypes, which is altered during ageing and probably contributes to the development of ARHL. In addition to known cochlear synaptopathy, the present study shows that SGN central synapses are also pathologically changed during ageing, which collectively helps us better understand the structure and function of SGNs during ARHL. ABSTRACT: Sound information is transmitted from the cochlea to the brain by different subtypes of spiral ganglion neurons (SGN), which show varying degrees of vulnerability under pathological conditions. Selective cochlear synaptopathy, the preferential damage of certain subtypes of SGN peripheral synapses, has been recognized as one of the main mechanisms of hearing loss. The organization and function of the auditory nerve (AN) central synapses from different subtypes of SGNs remain unclear, including how different AN synapses reassemble onto individual neurons in the cochlear nucleus, as well as how they differentially change during hearing loss. Combining immunohistochemistry with electrophysiology, we investigated the convergence pattern and subtype-specific synaptopathy of AN synapses at the endbulb of Held, as well as the response properties of their postsynaptic bushy neurons in CBA/CaJ mice of either sex under normal hearing and age-related hearing loss (ARHL). We found that calretinin-expressing (type Ia ) and non-calretinin-expressing (type Ib /Ic ) endbulbs converged along a continuum of different ratios onto individual bushy neurons with varying physiological properties. Endbulbs degenerated during ageing in parallel with ARHL. Furthermore, the degeneration was more severe in non-calretinin-expressing synapses, which correlated with a gradual decrease in bushy neuron subpopulation predominantly innervated by these inputs. These synaptic and cellular changes were profound in middle-aged mice when their hearing thresholds were still relatively normal and prior to severe ARHL. Our findings suggest that biased AN central synaptopathy and the correlated shift in cochlear nucleus neuronal composition play significant roles in weakened auditory input and altered central auditory processing during ARHL.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva , Animales , Cóclea , Nervio Coclear , Ratones , Ratones Endogámicos CBA , Ganglio Espiral de la Cóclea , Sinapsis
6.
Biochem J ; 473(9): 1257-66, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26951716

RESUMEN

Scorpions are insensitive to their own venoms, which contain various neurotoxins specific for mammalian or insect ion channels, whose molecular mechanism remains unsolved. Using MmKv1, a potassium channel identified from the genome of the scorpion Mesobuthus martensii, channel kinetic experiments showed that MmKv1 was a classical voltage-gated potassium channel with a voltage-dependent fast activation and slow inactivation. Compared with the human Kv1.3 channel (hKv1.3), the MmKv1 channel exhibited a remarkable insensitivity to both scorpion venom and toxin. The chimaeric channels of MmKv1 and hKv1.3 revealed that both turret and filter regions of the MmKv1 channel were critical for the toxin insensitivity of MmKv1. Furthermore, mutagenesis of the chimaeric channel indicated that two basic residues (Arg(399) and Lys(403)) in the MmKv1 turret region and Arg(425) in the MmKv1 filter region significantly affected its toxin insensitivity. Moreover, when these three basic residues of MmKv1 were simultaneously substituted with the corresponding residues from hKv1.3, the MmKv1-R399T/K403S/R425H mutant channels exhibited similar sensitivity to both scorpion venom and toxin to hKv1.3, which revealed the determining role of these three basic residues in the toxin insensitivity of the MmKv1 channel. More strikingly, a similar triad sequence structure is present in all Shaker-like channels from venomous invertebrates, which suggested a possible convergent functional evolution of these channels to enable them to resist their own venoms. Together, these findings first illustrate the mechanism by which scorpions are insensitive to their own venoms at the ion channel receptor level and enrich our knowledge of the insensitivity of scorpions and other venomous animals to their own venoms.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Resistencia a Medicamentos/fisiología , Canal de Potasio Kv1.3/metabolismo , Venenos de Escorpión/farmacología , Escorpiones/metabolismo , Sustitución de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Humanos , Canal de Potasio Kv1.3/genética , Mutación Missense , Escorpiones/genética
7.
Peptides ; 71: 77-83, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26188173

RESUMEN

The KCNQ1/KCNE1 channel (IKs) plays important roles in the physiological and pathological process of heart, but no potent peptide acting on this channel has been reported. In this work, we found that the natural scorpion venom hardly inhibited KCNQ1/KCNE1 channel currents. Based on this observation, we attempted to use three natural scorpion toxins ChTX, BmKTX and OmTx2 with two different structural folds as templates to engineer potent peptide inhibitors towards the KCNQ1/KCNE1 channel. Pharmacological experiments showed that when we screen with 1µM MT2 peptide, an analog derived from BmKTX toxin, KCNQ1/KCNE1 channel currents could be effectively inhibited. Concentration-dependent experiments showed that MT2 inhibited the KCNQ1/KCNE1 channel with an IC50 value of 4.6±1.9µM. The mutagenesis experiments indicated that MT2 peptide likely used Lys26 residue to interact with the KCNQ1/KCNE1 channel. With MT2 as a new template, we further designed a more potent MT2-2 peptide, which selectively inhibited the KCNQ1/KCNE1 channel with an IC50 of 1.51±0.62µM. Together, this work provided a much potent KCNQ1/KCNE1 channel peptide inhibitor so far, and highlighted the role of molecular strategy in developing potent peptide inhibitors for the natural toxin-insensitive orphan receptors.


Asunto(s)
Canal de Potasio KCNQ1/antagonistas & inhibidores , Péptidos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Células HEK293 , Humanos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Péptidos/química , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/química , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Ingeniería de Proteínas
8.
Int J Biol Macromol ; 79: 504-10, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26014142

RESUMEN

Peptides with Ascaris-type fold are a new kind of toxins founded from venomous animals recently. Functionally, these unique toxin peptides had been identified as potent protease inhibitors, which was similar to other known Ascaris-type peptides from non-venomous animals. Whether Ascaris-type peptides from venom animals have neurotoxin activities remains unclear. Here, a scorpion toxin SjAPI-2 with Ascaris-type fold was characterized to have a neurotoxin activity, which can selectively inhibit KCNQ1 potassium channel. SjAPI-2 had 62 amino acid residues, including 10 cysteine residues. Charged residue analyses showed that two acidic residues of SjAPI-2 were regionally distributed, and 10 basic residues were distributed widely throughout the whole peptide, which was similar to classical potassium channel toxins. Pharmacological studies confirmed that SjAPI-2 was a selective KCNQ1 potassium channel inhibitor with weak effects on other potassium channels, such as Kv1.1, Kv1.2, Kv1.3, SKCa2, SKCa3, and IKCa channels. Concentration-dependent studies showed that SjAPI-2 inhibited the KCNQ1 potassium channel with an IC50 of 771.5±169.9 nM. To the best of our knowledge, SjAPI-2 is the first neurotoxin with a unique Ascaris-type fold, providing novel insights into the divergent evolution of neurotoxins from venomous animals.


Asunto(s)
Proteínas de Artrópodos/química , Canal de Potasio KCNQ1/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/química , Venenos de Escorpión/química , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/aislamiento & purificación , Proteínas de Artrópodos/farmacología , Secuencia de Bases , Clonación Molecular , Células HEK293 , Humanos , Potenciales de la Membrana/efectos de los fármacos , Ratones , Datos de Secuencia Molecular , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Bloqueadores de los Canales de Potasio/farmacología , Estabilidad Proteica , Estructura Secundaria de Proteína , Venenos de Escorpión/aislamiento & purificación , Venenos de Escorpión/farmacología , Escorpiones/química
9.
FASEB J ; 27(1): 163-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23012322

RESUMEN

The genomic amplification of chromosome 1q long arm, the chromosomal region containing C1orf61, is a common event in human cancers. However, the expression pattern of chromosome 1 open reading frame 61 (C1orf61) in hepatocellular carcinoma (HCC) and its effects on HCC progression remain unclear. We have previously reported that C1orf61 is highly up-regulated during human embryogenesis. In this study, we report that C1orf61 expression is associated with the progression of liver disease. We found that C1orf61 is up-regulated in hepatic cirrhosis tissues and is further up-regulated in primary HCC tumors. Moreover, hepatitis B virus (HBV)-positive patients exhibited significantly higher levels of C1orf61 expression than HBV-negative patients. The evaluation of highly malignant HCC cell lines revealed high protein expression levels of C1orf61. Furthermore, the C1orf61 protein was found to be predominantly distributed within the cytoplasm. The ectopic expression of C1orf61 in the nonmalignant L02 cell line promoted cellular proliferation and colony formation in vitro, as well as cell cycle progression via the regulation of the expression of specific cell cycle-related proteins. In addition, the overexpression of C1orf61 in L02 cells facilitated cellular invasion and metastasis. The down-regulation of epithelial markers (E-cadherin and occludin) and the up-regulation of mesenchymal markers (N-cadherin, vimentin, and snail) suggested that the overexpression of C1orf61 induced the epithelial-mesenchymal transition (EMT) that is linked to metastasis. Taken together, our findings demonstrate, for the first time, the roles of C1orf61 in HCC tumorigenesis and metastasis.


Asunto(s)
Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica , Neoplasias Hepáticas/patología , Metástasis de la Neoplasia , Secuencia de Bases , Western Blotting , Carcinoma Hepatocelular/genética , Línea Celular , Línea Celular Tumoral , Cartilla de ADN , Femenino , Hepatitis B/genética , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/genética , Masculino , Sistemas de Lectura Abierta , Análisis de Matrices Tisulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...