Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703764

RESUMEN

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Neoplasias Renales , Proteogenómica , Humanos , Proteogenómica/métodos , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Transcriptoma/genética , Masculino , Femenino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica
2.
Front Immunol ; 15: 1354128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558806

RESUMEN

Importance: Disease models for atopic dermatitis (AD) have primarily focused on understanding underlying environmental, immunologic, and genetic etiologies. However, the role of metabolic mechanisms in AD remains understudied. Objective: To investigate the circulating blood metabolomic and cytokine profile of AD as compared to healthy control patients. Design: This study collected plasma from 20 atopic dermatitis with moderate-to-severe itch (score of ≥5 on the itch Numeric Rating Scale and IGA score ≥3) and 24 healthy control patients. Mass-spectrometry based metabolite data were compared between AD and healthy controls. Unsupervised and supervised machine learning algorithms and univariate analysis analyzed metabolic concentrations. Metabolite enrichment and pathway analyses were performed on metabolites with significant fold change between AD and healthy control patients. To investigate the correlation between metabolites levels and cytokines, Spearman's rank correlation coefficients were calculated between metabolites and cytokines. Setting: Patients were recruited from the Johns Hopkins Itch Center and dermatology outpatient clinics in the Johns Hopkins Outpatient Center. Participants: The study included 20 atopic dermatitis patients and 24 healthy control patients. Main outcomes and measures: Fold changes of metabolites in AD vs healthy control plasma. Results: In patients with AD, amino acids isoleucine, tyrosine, threonine, tryptophan, valine, methionine, and phenylalanine, the amino acid derivatives creatinine, indole-3-acrylic acid, acetyl-L-carnitine, L-carnitine, 2-hydroxycinnamic acid, N-acetylaspartic acid, and the fatty amide oleamide had greater than 2-fold decrease (all P-values<0.0001) compared to healthy controls. Enriched metabolites were involved in branched-chain amino acid (valine, leucine, and isoleucine) degradation, catecholamine biosynthesis, thyroid hormone synthesis, threonine metabolism, and branched and long-chain fatty acid metabolism. Dysregulated metabolites in AD were positively correlated cytokines TARC and MCP-4 and negatively correlated with IL-1a and CCL20. Conclusions and relevance: Our study characterized novel dysregulated circulating plasma metabolites and metabolic pathways that may be involved in the pathogenesis of AD. These metabolic pathways serve as potential future biomarkers and therapeutic targets in the treatment of AD.


Asunto(s)
Dermatitis Atópica , Humanos , Citocinas/metabolismo , Isoleucina , Prurito , Valina , Treonina
3.
Aging Cell ; 23(4): e14102, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38481042

RESUMEN

Tryptophan catabolism is highly conserved and generates important bioactive metabolites, including kynurenines, and in some animals, NAD+. Aging and inflammation are associated with increased levels of kynurenine pathway (KP) metabolites and depleted NAD+, factors which are implicated as contributors to frailty and morbidity. Contrastingly, KP suppression and NAD+ supplementation are associated with increased life span in some animals. Here, we used DGRP_229 Drosophila to elucidate the effects of KP elevation, KP suppression, and NAD+ supplementation on physical performance and survivorship. Flies were chronically fed kynurenines, KP inhibitors, NAD+ precursors, or a combination of KP inhibitors with NAD+ precursors. Flies with elevated kynurenines had reduced climbing speed, endurance, and life span. Treatment with a combination of KP inhibitors and NAD+ precursors preserved physical function and synergistically increased maximum life span. We conclude that KP flux can regulate health span and life span in Drosophila and that targeting KP and NAD+ metabolism can synergistically increase life span.


Asunto(s)
Quinurenina , Triptófano , Animales , Quinurenina/metabolismo , Triptófano/metabolismo , Longevidad , NAD/metabolismo , Drosophila/metabolismo
5.
Prostate ; 84(7): 644-655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409853

RESUMEN

BACKGROUND: Lipid reprogramming is a known mechanism to increase the energetic demands of proliferating cancer cells to drive and support tumorigenesis and progression. Elevated lipid droplets (LDs) are a well-known alteration of lipid reprogramming in many cancers, including prostate cancer (PCa), and are associated with high tumor aggressiveness as well as therapy resistance. The mechanism of LD accumulation and specific LD functions are still not well understood; however, it has been shown that LDs can form as a protective mechanism against lipotoxicity and lipid peroxidation in the cell. METHODS: This study investigated the significance of LDs in PCa. This was done by staining, imaging, image quantification, and flow cytometry analysis of LDs in PCa cells. Additionally, lipidomics and metabolomics experiments were performed to assess the difference of metabolites and lipids in control and treatment surviving cancer cells. Lastly, to assess clinical significance, multiple publicly available datasets were mined for LD-related data. RESULTS: Our study demonstrated that prostate and breast cancer cells that survive 72 h of chemotherapy treatment have elevated LDs. These LDs formed in tandem with elevated reactive oxygen species levels to sequester damaged and excess lipids created by oxidative stress, which promoted cell survival. Additionally, by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) (which catalyzes triglyceride synthesis into LDs) and treating with chemotherapy simultaneously, we were able to decrease the overall amount of LDs and increase cancer cell death compared to treating with chemotherapy alone. CONCLUSIONS: Overall, our study proposes a potential combination therapy of DGAT1 inhibitors and chemotherapy to increase cancer cell death.


Asunto(s)
Gotas Lipídicas , Neoplasias de la Próstata , Masculino , Humanos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Próstata/patología , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología
6.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38226418

RESUMEN

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Asunto(s)
Antineoplásicos , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratones , Ratas , Calcio/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Ácidos Grasos/metabolismo , Lípidos , Pulmón/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Canales Catiónicos TRPV/metabolismo
7.
bioRxiv ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37786718

RESUMEN

Knockout (KO) of the fatty acid-activation enzyme very long-chain acyl-CoA synthetase 3 (ACSVL3; SLC27A3) in U87MG glioblastoma cells reduced their malignant growth properties both in vitro and in xenografts. These U87-KO glioma cells grew at a slower rate, became adherence-dependent, and were less invasive than parental U87 cells. U87-KO cells produced fewer, slower-growing subcutaneous and intracranial tumors when implanted in NOD-SCID mice. Thus, depleting U87MG cells of ACSVL3 restored these cells to a phenotype more like that of normal astrocytes. To understand the mechanisms underlying these beneficial changes, we investigated several possibilities, including the effects of ACSVL3 depletion on carbohydrate metabolism. Proteomic and metabolomic profiling indicated that ACSVL3 KO produced changes in glucose and energy metabolism. Even though protein levels of glucose transporters GLUT1 and GLUT3 were reduced by KO, cellular uptake of labeled 2-deoxyglucose was unaffected. Glucose oxidation to CO2 was reduced nearly 7-fold by ACSVL3 depletion, and the cellular glucose level was 25% higher in KO cells. Glycolytic enzymes were upregulated by KO, but metabolic intermediates were essentially unchanged. Surprisingly, lactate production and the levels of lactate dehydrogenase isozymes LDHA and LDHB were elevated by ACSVL3 KO. The activity of the pentose phosphate pathway was found to be lower in KO cells. Citric acid cycle enzymes, electron transport chain complexes, and ATP synthase protein levels were all reduced by ACSVL3 depletion. Mitochondria were elongated in KO cells, but had a more punctate morphology in U87 cells. The mitochondrial potential was unaffected by lack of ACSVL3. We conclude that the beneficial effects of ACSVL3 depletion in human glioblastoma cells may result in part from alterations in diverse metabolic processes that are not directly related to role(s) of this enzyme in fatty acid and/or lipid metabolism. (Supported by NIH 5R01NS062043 and KKI institutional funds.).

8.
J Gerontol A Biol Sci Med Sci ; 78(10): 1740-1752, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37310873

RESUMEN

Chronic activation of inflammatory pathways (CI) and mitochondrial dysfunction are independently linked to age-related functional decline and early mortality. Interleukin 6 (IL-6) is among the most consistently elevated chronic activation of inflammatory pathways markers, but whether IL-6 plays a causative role in this mitochondrial dysfunction and physical deterioration remains unclear. To characterize the role of IL-6 in age-related mitochondrial dysregulation and physical decline, we have developed an inducible human IL-6 (hIL-6) knock-in mouse (TetO-hIL-6mitoQC) that also contains a mitochondrial-quality control reporter. Six weeks of hIL-6 induction resulted in upregulation of proinflammatory markers, cell proliferation and metabolic pathways, and dysregulated energy utilization. Decreased grip strength, increased falls off the treadmill, and increased frailty index were also observed. Further characterization of skeletal muscles postinduction revealed an increase in mitophagy, downregulation of mitochondrial biogenesis genes, and an overall decrease in total mitochondrial numbers. This study highlights the contribution of IL-6 to mitochondrial dysregulation and supports a causal role of hIL-6 in physical decline and frailty.


Asunto(s)
Fragilidad , Interleucina-6 , Ratones , Humanos , Animales , Interleucina-6/genética , Interleucina-6/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo
9.
Pulm Circ ; 13(1): e12205, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36873460

RESUMEN

In pulmonary artery hypertension (PAH), emerging evidence suggests that metabolic abnormalities may be contributing to cellular dysfunction in PAH. Metabolic abnormalities such as glycolytic shift have been observed intracellularly in several cell types in PAH, including microvacular endothelial cells (MVECs). Concurrently, metabolomics of human PAH samples has also revealed a variety of metabolic abnormalities; however the relationship between the intracellular metabolic abnormalities and the serum metabolome in PAH remains under investigation. In this study, we utilize the sugen/hypoxia (SuHx) rodent model of PAH to examine the RV, LV and MVEC intracellular metabolome (using targeted metabolomics) in normoxic and SuHx rats. We additionally validate key findings from our metabolomics experiments with data obtained from cell culture of normoxic and SuHx MVECs, as well as metabolomics of human serum samples from two different PAH patient cohorts. Taken together, our data, spanning rat serum, human serum and primary isolated rat MVECs reveal that: (1) key classes of amino acids (specifically, branched chain amino acids-BCAA) are lower in the pre-capillary (i.e., RV) serum of SuHx rats (and humans); (2) intracellular amino acid levels (in particular BCAAs) are increased in SuHx-MVECs; (3) there may be secretion rather than utilization of amino acids across the pulmonary microvasculature in PAH and (4) an oxidized glutathione gradient is present across the pulmonary vasculature, suggesting a novel fate for increased glutamine uptake (i.e., as a source of glutathione). in MVECs in PAH. In summary, these data reveal new insight into the shifts in amino acid metabolism occurring across the pulmonary circulation in PAH.

10.
Chronic Obstr Pulm Dis ; 10(2): 159-169, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-36976551

RESUMEN

Background: Polymorphisms and products of the cyclooxygenase (COX) pathway have been associated with the development of chronic obstructive pulmonary disease (COPD) and adverse outcomes. COX-produced prostaglandin E2 (PGE-2) may play a role in the inflammation observed in COPD, potentially through deleterious airway macrophage polarization. A better understanding of the role of PGE-2 in COPD morbidity may inform trials for therapeutics targeting the COX pathway or PGE-2. Methods: Urine and induced sputum were collected from former smokers with moderate-severe COPD. The major urinary metabolite of PGE-2 (PGE-M) was measured, and ELISA was performed on sputum supernatant for PGE-2 airway measurement. Airway macrophages underwent flow cytometry phenotyping (surface CD64, CD80, CD163, CD206, and intracellular IL-1ß, TGF-ß1). Health information was obtained the same day as the biologic sample collection. Exacerbations were collected at baseline and then monthly telephone calls. Results: Among 30 former smokers with COPD (mean±SD age 66.4±8.88 years and forced expiratory volume in 1 second [FEV1] 62.4±8.37 percent predicted), a 1 pg/mL increase in sputum PGE-2 was associated with higher odds of experiencing at least one exacerbation in the prior 12 months (odds ratio 3.3; 95% confidence interval: 1.3 to15.0), worse respiratory symptoms and health status. PGE-M was not associated with exacerbations or symptoms. Neither airway PGE-2 nor urinary PGE-M was uniformly associated with an M1 or M2 polarization. Conclusions: Elevated levels of sputum PGE-2, rather than systemic PGE-2, is associated with increased respiratory symptoms and history of exacerbation among individuals with COPD. Additional studies focused on mechanism of action are warranted.

11.
ACS Chem Biol ; 18(1): 151-165, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36626752

RESUMEN

Altered cellular metabolism is a hallmark of cancer pathogenesis and progression; for example, a near-universal feature of cancer is increased metabolic flux through the hexosamine biosynthetic pathway (HBP). This pathway produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a potent oncometabolite that drives multiple facets of cancer progression. In this study, we synthesized and evaluated peracetylated hexosamine analogs designed to reduce flux through the HBP. By screening a panel of analogs in pancreatic cancer and glioblastoma multiform (GBM) cells, we identified Ac4Glc2Bz─a benzyl-modified GlcNAc mimetic─as an antiproliferative cancer drug candidate that down-regulated oncogenic metabolites and reduced GBM cell motility at concentrations non-toxic to non-neoplastic cells. More specifically, the growth inhibitory effects of Ac4Glc2Bz were linked to reduced levels of UDP-GlcNAc and concomitant decreases in protein O-GlcNAc modification in both pancreatic cancer and GBM cells. Targeted metabolomics analysis in GBM cells showed that Ac4Glc2Bz disturbed glucose metabolism, amino acid pools, and nucleotide precursor biosynthesis, consistent with reduced proliferation and other anti-oncogenic properties of this analog. Furthermore, Ac4Glc2Bz reduced the invasion, migration, and stemness of GBM cells. Importantly, normal metabolic functions mediated by UDP-GlcNAc were not disrupted in non-neoplastic cells, including maintenance of endogenous levels of O-GlcNAcylation with no global disruption of N-glycan production. Finally, a pilot in vivo study showed that a potential therapeutic window exists where animals tolerated 5- to 10-fold higher levels of Ac4Glc2Bz than projected for in vivo efficacy. Together, these results establish GlcNAc analogs targeting the HBP through salvage mechanisms as a new therapeutic approach to safely normalize an important facet of aberrant glucose metabolism associated with cancer.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Animales , Vías Biosintéticas , Hexosaminas/metabolismo , Antineoplásicos/farmacología , Glucosa/metabolismo , Uridina Difosfato/metabolismo , Acetilglucosamina/metabolismo , Neoplasias Pancreáticas
12.
Adv Biol (Weinh) ; 7(2): e2200233, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36417583

RESUMEN

Relapses negatively impact cancer patient survival due to the tumorigenesis ability of surviving cancer cells post-therapy. Efforts are needed to better understand and combat this problem. This study hypothesized that dead cell debris post-radiation therapy creates an advantageous microenvironment rich in metabolic materials promoting the growth of remaining live cancer cells. In this study, live cancer cells are co-cultured with dead cancer cells eradicated by UV radiation to mimic a post-therapy environment. Isotopic labeling metabolomics is used to investigate the metabolic behavior of cancer cells grown in a post-radiation-therapy environment. It is found that post-UV-eradicated dead cancer cells serve as nutritional sources of "off-the-shelf" and precursor metabolites for surviving cancer cells. The surviving cancer cells then take up these metabolites, integrate and upregulate multiple vital metabolic processes, thereby significantly increasing growth in vitro and probably in vivo beyond their intrinsic fast-growing characteristics. Importantly, this active metabolite uptake behavior is only observed in oncogenic but not in non-oncogenic cells, presenting opportunities for therapeutic approaches to interrupt the active uptake process of oncogenic cells without affecting normal cells. The process by which living cancer cells re-use vital metabolites released by dead cancer cells post-therapy is coined in this study as "metabolic recycling" of oncogenic cells.


Asunto(s)
Linfoma de Células B , Recurrencia Local de Neoplasia , Humanos , Metabolómica , Transformación Celular Neoplásica/patología , Proliferación Celular , Microambiente Tumoral
13.
Cancer Cell ; 41(1): 139-163.e17, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563681

RESUMEN

Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Proteogenómica , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Resultado del Tratamiento , Pronóstico , Biomarcadores de Tumor/genética
14.
J Gerontol A Biol Sci Med Sci ; 77(12): 2367-2372, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36580380

RESUMEN

Dysregulation of energy producing metabolic pathways has been observed in older adults with frailty. In this study, we used liquid chromatography-mass spectrometry technology to identify aging- and frailty-related differences in metabolites involved in glycolysis, the tricarboxylic (TCA) cycle, and other energy metabolism-related pathways in the serum of a cohort of community-dwelling adults aged 20-97 (n = 146). We also examined the relationship between serum levels of metabolites and functional measures, physical frailty, and risk status for adverse health outcomes. We observed elevated levels of TCA cycle and glycolytic intermediates in frail subjects; however, the differences in the levels of ATP and other energy metabolites between young, nonfrail, and frail adults were not significant. Instead, we found that serum levels of neurotransmitters N-acetyl-aspartyl-glutamate, glutamate, and γ-aminobutyric acid were significantly elevated in older adults with frailty. These elevations of glycolytic and TCA cycle intermediates, and neurotransmitters may be part of the biological signature of frailty.


Asunto(s)
Fragilidad , Humanos , Anciano , Metabolómica , Envejecimiento , Glucólisis , Espectrometría de Masas , Anciano Frágil
15.
Proc Natl Acad Sci U S A ; 119(45): e2212178119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322718

RESUMEN

Citrate is a critical metabolic substrate and key regulator of energy metabolism in mammalian cells. It has been known for decades that the skeleton contains most (>85%) of the body's citrate, but the question of why and how this metabolite should be partitioned in bone has received singularly little attention. Here, we show that osteoblasts use a specialized metabolic pathway to regulate uptake, endogenous production, and the deposition of citrate into bone. Osteoblasts express high levels of the membranous Na+-dependent citrate transporter solute carrier family 13 member 5 (Slc13a5) gene. Inhibition or genetic disruption of Slc13a5 reduced osteogenic citrate uptake and disrupted mineral nodule formation. Bones from mice lacking Slc13a5 globally, or selectively in osteoblasts, showed equivalent reductions in cortical thickness, with similarly compromised mechanical strength. Surprisingly, citrate content in mineral from Slc13a5-/- osteoblasts was increased fourfold relative to controls, suggesting the engagement of compensatory mechanisms to augment endogenous citrate production. Indeed, through the coordinated functioning of the apical membrane citrate transporter SLC13A5 and a mitochondrial zinc transporter protein (ZIP1; encoded by Slc39a1), a mediator of citrate efflux from the tricarboxylic acid cycle, SLC13A5 mediates citrate entry from blood and its activity exerts homeostatic control of cytoplasmic citrate. Intriguingly, Slc13a5-deficient mice also exhibited defective tooth enamel and dentin formation, a clinical feature, which we show is recapitulated in primary teeth from children with SLC13A5 mutations. Together, our results reveal the components of an osteoblast metabolic pathway, which affects bone strength by regulating citrate deposition into mineral hydroxyapatite.


Asunto(s)
Ácido Cítrico , Simportadores , Animales , Ratones , Ácido Cítrico/metabolismo , Simportadores/metabolismo , Durapatita/metabolismo , Citratos , Ciclo del Ácido Cítrico , Osteoblastos/metabolismo , Mamíferos/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo
16.
J Gerontol A Biol Sci Med Sci ; 77(12): 2356-2366, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35511890

RESUMEN

Losartan is an oral antihypertensive agent that is rapidly metabolized to EXP3174 (angiotensin-subtype-1-receptor blocker) and EXP3179 (peroxisome proliferator-activated receptor gamma [PPARγ] agonist), which was shown in animal studies to reduce inflammation, enhance mitochondrial energetics, and improve muscle repair and physical performance. We conducted an exploratory pilot study evaluating losartan treatment in prefrail older adults (age 70-90 years, N = 25). Participants were randomized to control (placebo) or treatment (daily oral losartan beginning at 25 mg per day and increasing every 8 weeks) for a total of 6 months. Fatigue, hyperkalemia, and hypotension were the most observed side effects of losartan treatment. Participants in the losartan group had an estimated 89% lower odds of frailty (95% confidence interval [CI]: 18% to 99% lower odds, p = .03), with a 0.3-point lower frailty score than the placebo group (95% CI: 0.01-0.5 lower odds, p = .04). Frailty score was also negatively associated with serum losartan and EXP3179 concentrations. For every one standard deviation increase in EXP3179 (ie, 0.0011 ng/µL, based on sample values above detection limit) and EXP3174 (ie, 0.27 ng/µL, based on sample values above detection limit), there was a 0.0035 N (95% CI: 0.0019-0.0051, p < .001) and a 0.0027 N (95% CI: 0.00054-0.0043, p = .007) increase in average knee strength, respectively.


Asunto(s)
Fragilidad , Losartán , Animales , Losartán/uso terapéutico , Proyectos Piloto , Imidazoles/metabolismo , Imidazoles/farmacología , Fragilidad/tratamiento farmacológico , Tetrazoles/metabolismo , Tetrazoles/farmacología , Antihipertensivos/uso terapéutico , Antagonistas de Receptores de Angiotensina
17.
Semin Cancer Biol ; 86(Pt 3): 180-188, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35390455

RESUMEN

Cancer cells possess various biological processes to ensure survival and proliferation even under unfavorable conditions such as hypoxia, nutrient deprivation, and oxidative stress. One of the defining hallmarks of cancer cells is their ability to reprogram their metabolism to suit their needs. Building on over a decade of research in the field of cancer metabolism, numerous unique metabolic capabilities are still being discovered in the present day. One recent discovery in the field of cancer metabolism that was hitherto unexpected is the ability of cancer cells to store vital metabolites in forms that can be readily converted to glucose and glutamine for later use. We called these forms "metabolic reservoirs." While many studies have been conducted on storage molecules such as glycogen, triglyceride, and phosphocreatine (PCr), few have explored the concept of "metabolic reservoirs" for cancer as a whole. In this review, we will provide an overview of this concept, the previously known reservoirs including glycogen, triglyceride, and PCr, and the new discoveries made including the newly discovered reservoirs such as N-acetyl-aspartyl-glutamate (NAAG), lactate, and γ- aminobutyric acid (GABA). We will also discuss whether disrupting these reservoir cycles may be a new avenue for cancer treatment.


Asunto(s)
Ácido Glutámico , Neoplasias , Humanos , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Glucógeno/metabolismo , Ácido Láctico/metabolismo , Triglicéridos
18.
J Nephrol ; 35(2): 657-663, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34181196

RESUMEN

Renal biopsy is currently the gold standard for diagnosing active renal vasculitis. In this pilot study, metabolomics analysis was used to investigate the differences in metabolic profiles between paired patients' serum and urine samples collected during both the active and the remission phase of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV). Ten patients with AAV renal disease were included. Mean age was 61 years, with 6 patients each being male and Caucasian. Mean Birmingham Vasculitis Activity Score (BVAS) and mean glomerular filtration rate (GFR) were 17 and 28, respectively. We found that while the citric acid cycle intermediates citrate, iso-citrate and oxaloacetate had lower intensities in the active phase samples as compared to the remission phase samples. The intensities of other metabolites of carbohydrate metabolism, amino acid metabolism, and nucleotide synthesis were significantly higher in the active phase samples, indicating the upregulation of these pathways for the production of energy and other biomolecules such as proteins and nucleic acids during the active phase of AAV. This pilot study suggests that serum and urinary metabolomic profiling may be useful to monitor disease activity in renal AAV.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Glomerulonefritis , Anticuerpos Anticitoplasma de Neutrófilos , Glomerulonefritis/diagnóstico , Humanos , Riñón , Masculino , Persona de Mediana Edad , Proyectos Piloto
19.
Curr Opin Biotechnol ; 71: 115-122, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34339935

RESUMEN

Single-cell metabolomics (SCM) is currently one of the most powerful tools for performing high-throughput metabolic analysis at the cellular level. The power of single-cell metabolomics to determine the metabolic profiles of individual cells makes it very suitable for decoding cell heterogeneity. SCM bears great potential in cell type identification and differentiation within cell colonies. With the development of various equipment and techniques, SCM analysis has become possible for a wide range of biological samples. Many fields have incorporated this cutting-edge analytic tool to generate fruitful findings. This review article pays close attention to the prevalent techniques utilized in SCM and the exciting new findings and applications developed by studies in phytology, neurology, and oncology using SCM.


Asunto(s)
Metaboloma , Metabolómica , Análisis de la Célula Individual
20.
Adv Exp Med Biol ; 1311: 3-15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34014531

RESUMEN

Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells derived the energy required for uncontrolled replication from proteolysis and lipolysis, Warburg instead found them to rapidly consume glucose, converting it to lactate even in the presence of oxygen. The significance of this finding, later termed the Warburg effect, went unnoticed by the broader scientific community at that time. The field of cancer metabolism lay dormant for almost a century awaiting advances in molecular biology and genetics, which would later open the doors to new cancer therapies [2, 3].


Asunto(s)
Glucólisis , Neoplasias , Metabolismo de los Hidratos de Carbono , Metabolismo Energético , Glucosa , Humanos , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA