Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Hematol ; 99(6): 1103-1107, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572662

RESUMEN

Hyperleukocytosis is an emergency of acute leukemia leading to blood hyperviscosity, potentially resulting in life-threatening microvascular obstruction, or leukostasis. Due to the high number of red cells in the circulation, hematocrit/hemoglobin levels (Hct/Hgb) are major drivers of blood viscosity, but how Hct/Hgb mediates hyperviscosity in acute leukemia remains unknown. In vivo hemorheological studies are difficult to conduct and interpret due to issues related to visualizing and manipulating the microvasculature. To that end, a multi-vessel microfluidic device recapitulating the size-scale and geometry of the microvasculature was designed to investigate how Hct/Hgb interacts with acute leukemia to induce "in vitro" leukostasis. Using patient samples and cell lines, the degree of leukostasis was different among leukemia immunophenotypes with respect to white blood cell (WBC) count and Hct/Hgb. Among lymphoid immunophenotypes, severe anemia is protective against in vitro leukostasis and Hct/Hgb thresholds became apparent above which in vitro leukostasis significantly increased, to a greater extent with B-cell acute lymphoblastic leukemia (ALL) versus T-cell ALL. In vitro leukostasis in acute myeloid leukemia was primarily driven by WBC with little interaction with Hct/Hgb. This sets the stage for prospective clinical studies assessing how red cell transfusion may affect leukostasis risk in immunophenotypically different acute leukemia patients.


Asunto(s)
Viscosidad Sanguínea , Transfusión de Eritrocitos , Humanos , Microvasos , Leucostasis/etiología , Hematócrito , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/sangre , Femenino , Masculino , Hemoglobinas/análisis
2.
J Control Release ; 361: 470-482, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543290

RESUMEN

Advances in multiagent chemotherapy have led to recent improvements in survival for patients with acute lymphoblastic leukemia (ALL); however, a significant fraction do not respond to frontline chemotherapy or later relapse with recurrent disease, after which long-term survival rates remain low. To develop new, effective treatment options for these patients, we conducted a series of high-throughput combination drug screens to identify chemotherapies that synergize in a lineage-specific manner with MRX-2843, a small molecule dual MERTK and FLT3 kinase inhibitor currently in clinical testing for treatment of relapsed/refractory leukemias and solid tumors. Using experimental and computational approaches, we found that MRX-2843 synergized strongly-and in a ratio-dependent manner-with vincristine to inhibit both B-ALL and T-ALL cell line expansion. Based on these findings, we developed multiagent lipid nanoparticle formulations of these drugs that not only delivered defined drug ratios intracellularly in T-ALL, but also improved anti-leukemia activity following drug encapsulation. Synergistic and additive interactions were recapitulated in primary T-ALL patient samples treated with MRX-2843 and vincristine nanoparticle formulations, suggesting their clinical relevance. Moreover, the nanoparticle formulations reduced disease burden and prolonged survival in an orthotopic murine xenograft model of early thymic precursor T-ALL (ETP-ALL), with both agents contributing to therapeutic activity in a dose-dependent manner. In contrast, nanoparticles containing MRX-2843 alone were ineffective in this model. Thus, MRX-2843 increased the sensitivity of ETP-ALL cells to vincristine in vivo. In this context, the additive particles, containing a higher dose of MRX-2843, provided more effective disease control than the synergistic particles. In contrast, particles containing an even higher, antagonistic ratio of MRX-2843 and vincristine were less effective. Thus, both the drug dose and the ratio-dependent interaction between MRX-2843 and vincristine significantly impacted therapeutic activity in vivo. Together, these findings present a systematic approach to high-throughput combination drug screening and multiagent drug delivery that maximizes the therapeutic potential of combined MRX-2843 and vincristine in T-ALL and describe a novel translational agent that could be used to enhance therapeutic responses to vincristine in patients with T-ALL. This broadly generalizable approach could also be applied to develop other constitutively synergistic combination products for the treatment of cancer and other diseases.


Asunto(s)
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animales , Ratones , Vincristina/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia de Células T/tratamiento farmacológico , Ciclo Celular , Inhibidores de Proteínas Quinasas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
3.
Nat Commun ; 14(1): 5022, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596311

RESUMEN

While microscopy-based cellular assays, including microfluidics, have significantly advanced over the last several decades, there has not been concurrent development of widely-accessible techniques to analyze time-dependent microscopy data incorporating phenomena such as fluid flow and dynamic cell adhesion. As such, experimentalists typically rely on error-prone and time-consuming manual analysis, resulting in lost resolution and missed opportunities for innovative metrics. We present a user-adaptable toolkit packaged into the open-source, standalone Interactive Cellular assay Labeled Observation and Tracking Software (iCLOTS). We benchmark cell adhesion, single-cell tracking, velocity profile, and multiscale microfluidic-centric applications with blood samples, the prototypical biofluid specimen. Moreover, machine learning algorithms characterize previously imperceptible data groupings from numerical outputs. Free to download/use, iCLOTS addresses a need for a field stymied by a lack of analytical tools for innovative, physiologically-relevant assays of any design, democratizing use of well-validated algorithms for all end-user biomedical researchers who would benefit from advanced computational methods.


Asunto(s)
Inteligencia Artificial , Microfluídica , Microscopía , Programas Informáticos , Células Sanguíneas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA