Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Total Environ ; 953: 176167, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39260499

RESUMEN

Flooding of paddy fields enhances methane (CH4) emissions and arsenic (As) mobilisation, which are crucial issues for agricultural greenhouse gas emissions and food safety. Birnessite (δ-MnO2) is a common natural oxidant and scavenger for heavy metals. In this study, birnessite was applied to As-contaminated paddy soil. The capacity for simultaneously alleviating CH4 emissions and As mobility was explored. Soil microcosm incubation results indicated that birnessite addition simultaneously reduced CH4 emissions by 47 %-54 % and As release by 38 %-85 %. The addition of birnessite decreased the dissolved organic carbon (DOC) contents and altered its chemical properties. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) results showed that birnessite reduced the labile fractions of proteins, carbohydrates, lignins, tannins, and unsaturated hydrocarbons, however, increased the abundance of condensed aromatic structures, suggesting the polymerisation of dissolved organic matter (DOM) by birnessite. The degradation of labile fractions and the polymerisation of DOM resulted in an inventory of recalcitrant DOM, which is difficult for microbes to metabolise, thus inhibiting methanogenesis. In contrast, birnessite addition increased CH4 oxidation, as the particulate methane monooxygenase (pmoA) gene abundance increased by 30 %. The enhanced polymerisation of DOM by birnessite also increased As complexation with organics, leading to the transfer of As to the organic bound phase. In addition, the decrease in ferrous ion [Fe(II)] concentrations with birnessite indicated that the reductive dissolution of Fe oxides was suppressed, which limited the release of arsenite [As(III)] under reducing conditions. Furthermore, birnessite decreased As methylation and shaped the soil microbial community structure by enriching the metal-reducing bacterium Bacillus. Overall, our results provide a promising method to suppress greenhouse gas emissions and the risk of As contamination in paddy soils, although further studies are needed to verify its efficacy and effectiveness under field conditions.


Asunto(s)
Arsénico , Metano , Óxidos , Contaminantes del Suelo , Suelo , Arsénico/análisis , Contaminantes del Suelo/análisis , Óxidos/química , Suelo/química , Inundaciones , Agricultura/métodos , Oryza , Contaminantes Atmosféricos/análisis , Microbiología del Suelo
2.
J Hazard Mater ; 478: 135515, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39178777

RESUMEN

The behavior and fate of PFOS (perfluorooctanesulfonate) in the aquatic environment have received great attention due to its high toxicity and persistence. The nanoscale supramolecular mechanisms of interaction between PFOS and ubiquitous EPS (exopolymers) remain unclear though EPS have been widely-known to influence the bioavailability of PFOS. Typically, the exposure patterns of PFOS in aquatic animals changed with the EPS-PFOS interaction are not fully understood. This study hypothesized that PFOS exposure and accumulation pathways depended on the PFOS-EPS interactive assembly behavior and animal species. Two model animals, zebrafish and chironomid larvae, with different feeding habitats were chosen for the exposure and accumulation tests at the environmental concentrations of PFOS in the absence and presence of EPS. It was found that PFOS triggered the self-assembly of EPS to form large aggregates which significantly trapped PFOS. PFOS accumulation was significantly promoted in zebrafish but drastically reduced in chironomid larvae because of the nanoscale interactive assembly between EPS and PFOS. The decreased dermal uptake but increased oral uptake of PFOS by zebrafish with large mouthpart size could be ascribed to the increased ingestion of PFOS-enriched EPS aggregates as food. For the chironomid larvae with small mouthpart size, the PFOS-EPS assemblies reduced the dermal, oral and intestinal uptake of PFOS. The nano-visualization evidences confirmed that the PFOS-enriched EPS-PFOS assemblies blocked PFOS penetration through skin of both animals. These findings provide novel knowledge about the ecological risk of PFOS in aquatic environments.


Asunto(s)
Ácidos Alcanesulfónicos , Chironomidae , Fluorocarburos , Larva , Contaminantes Químicos del Agua , Pez Cebra , Animales , Ácidos Alcanesulfónicos/metabolismo , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/metabolismo , Fluorocarburos/toxicidad , Chironomidae/metabolismo , Chironomidae/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Larva/metabolismo , Larva/efectos de los fármacos , Ecosistema
3.
J Hazard Mater ; 479: 135649, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39208625

RESUMEN

The toxicity of microplastics (MPs) to aquatic animals is closely related to the presence and release kinetics of contained additives, as most plastic products contain various additives. However, the relationship between the occurrence and release of additives from MPs, and their individual or combined toxicity remains unclear. In this study, the nanoscale distribution and release of tetrabromobisphenol A (TBBPA, a common flame retardant with endocrine-disrupting effect) in polystyrene (PS) MPs, and the long-term (60 days) toxicity of TBBPA and MPs containing TBBPA (at doses of 0 %, 1 %, 10 %, w/w) to Xenopus tropicalis tadpoles were investigated. Exposure to 10 µg/L TBBPA alone was the most toxics, while the encapsulation of TBBPA in MPs significantly delayed its lethal toxicity to tadpoles by inhibiting the rapid and extensive release of TBBPA. PS MPs alone and MPs containing 10 % TBBPA exhibited delayed survival toxicity compared to TBBPA alone, whereas PS MPs containing 1 % TBBPA did not show this effect but inhibited growth. These findings suggest that chronic toxicity assessments should be based on long-term (months or even years) exposure experiments due to the encapsulation-controlled slow release of toxic additives.


Asunto(s)
Disruptores Endocrinos , Microplásticos , Bifenilos Polibrominados , Xenopus , Xenopus/crecimiento & desarrollo , Bifenilos Polibrominados/análisis , Bifenilos Polibrominados/toxicidad , Larva/efectos de los fármacos , Microplásticos/química , Microplásticos/toxicidad , Espectrometría de Masas en Tándem , Bioacumulación , Pruebas de Toxicidad , Disruptores Endocrinos/toxicidad
4.
Biochem Biophys Res Commun ; 724: 150223, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852505

RESUMEN

SWI/SNF chromatin remodeling complexes play a key role in gene transcription as epigenetic regulators and are typically considered to act as tumor suppressors in cancers. Compared to other cancer-related components of the SWI/SNF complex, research on SMARCC2, a component of the initial BAF core, has been relatively limited. This study aimed to elucidate the role of SMARCC2 in breast cancer by employing various in vitro and in vivo methods including cell proliferation assays, mammosphere formation, and xenograft models, complemented by RNA-seq, ATAC-seq, and ChIP analyses. The results showed that SMARCC2 silencing surprisingly led to the suppression of breast tumorigenesis, indicating a pro-tumorigenic function for SMARCC2 in breast cancer, which contrasts with the roles of other SWI/SNF subunits. In addition, SMARCC2 depletion reduces cancer stem cell features of breast cancer cells. Mechanistic study showed that SMARCC2 silencing downregulated the oncogenic Ras-PI3K signaling pathway, likely by directly regulating the chromatin accessibility of the enhancers of the key genes such as PIK3CB. Together, these results expand our understanding of the SWI/SNF complex's role in cancer development and identify SMARCC2 as a promising new target for breast cancer therapies.


Asunto(s)
Neoplasias de la Mama , Cromatina , Silenciador del Gen , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Cromatina/metabolismo , Cromatina/genética , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proliferación Celular/genética , Carcinogénesis/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Transducción de Señal , Ratones Desnudos , Ensamble y Desensamble de Cromatina/genética
5.
Adv Sci (Weinh) ; 11(31): e2403984, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896794

RESUMEN

Capacitance spectroscopy techniques have been widely utilized to evaluate the defect properties in perovskites, which contribute to the efficiency and operation stability development for perovskite solar cells (PSCs). Yet the interplay between the charge transporting layer (CTL) and the perovskite on the capacitance spectroscopy results is still unclear. Here, they show that a pseudo-trap-state capacitance signal is generated in thermal admittance spectroscopy (TAS) due to the enhanced resistance capacitance (RC) coupling caused by the carrier freeze-out of the CTL in PSCs, which could be discerned from the actual defect-induced trap state capacitance signal by tuning the series resistance of PSCs. By eliminating the RC coupling shielding effect on the defect-induced capacitance spectroscopy, it is obtain the actual defect density which is 4-folds lower than the pseudo-trap density, and the spatial distribution of defects in PSCs which reveals that the commonly adopted interface passivators can passivate the defects about 60 nm away from the decorated surface. It is further revealed that phenethylammonium ions (PEA+) possess a better passivation capability over octylammonium ions (OA+) due to the deeper passivation depth for PEA+ on the surface defects in perovskite films.

6.
Water Res ; 258: 121802, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38796914

RESUMEN

Rice paddies are globally important sources of methane emissions and also active regions for methane consumption. However, the impact of fluctuating groundwater levels on methane cycling has received limited attention. In this study, we delved into the activity and microbial mechanisms underlying anaerobic oxidation of methane (AOM) in paddy fields. A comprehensive approach was employed, including 13C stable isotope assays, inhibition experiments, real-time quantitative reverse transcription PCR, metagenomic sequencing, and binning technology. Geochemical profiles revealed the abundant coexistence of both methane and electron acceptors in the groundwater table fluctuation (GTF) zone, at a depth of 40-60 cm. Notably, the GTF zone exhibited the highest rate of AOM, potentially linked to the reduction of iron oxides and nitrate. Within this zone, Candidatus Methanoperedens (belonging to the ANME-2d group) dominated the Archaea population, accounting for a remarkable 85.4 %. Furthermore, our results from inhibition experiments, RT-qPCR, and metagenome-assembled genome (MAG) analysis highlighted the active role of Ca. Methanoperedens GTF50 in the GTF zone. This microorganism could independently mediate AOM process through the intriguing "reverse methanogenesis" pathway. Considering the similarity in geochemical conditions across different paddy fields, it is likely that Ca. Methanoperedens-mediated AOM is prevalent in the GTF zones.


Asunto(s)
Agua Subterránea , Metano , Oryza , Oxidación-Reducción , Metano/metabolismo , Agua Subterránea/química , Agua Subterránea/microbiología , Anaerobiosis , Archaea/genética , Archaea/metabolismo
7.
Water Res ; 253: 121334, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382293

RESUMEN

Ubiquitous presence of the extremely persistent pollutants, per- and polyfluoroalkyl substances, is drawing ever-increasing concerns for their high eco-environmental risks which, however, are insufficiently considered based on the assembly characteristics of those amphiphilic molecules in environment. This study investigated the re-organization and self-assembly of perfluorooctane sulfonate (PFOS) and macronutrient molecules from rhizospheric organic (RhO) matter induced with a common operation of aeration. Atomic force microscopy (AFM) with infrared spectroscopy (IR)-mapping clearly showed that, after aeration and stabilization, RhO nanocapsules (∼ 1000 nm or smaller) with a core of PFOS-protein complexes coated by "lipid-carbohydrate" layers were observed whereas the capsule structure with a lipid core surrounded by "protein-carbohydrate-protein" multilayers was obtained in the absence of PFOS. It is aeration that exerted the disassociation of pristine RhO components, after which the environmental concentration PFOS restructured the self-assembly structure in a conspicuous "disorder-to-order" transition. AFM IR-mapping analysis of faeces combined with quantification of component uptake denoted the decreased ingestion and utilization of both PFOS and proteins compared with lipids and carbohydrates when Daphnia magna were fed with RhO nanocapsules. RhO nanocapsules acted as double-edged swords via simultaneously impeding the bioaccessibility of hazardous PFOS molecules and macronutrient proteins; and the latter might be more significant, which caused a malnutrition status within merely 48 h. Elucidating the assembly structure of natural organic matter and environmental concentration PFOS, the finding of this work could be a crucial supplementation to the high-dose-dependent eco-effect investigations on PFOS.

8.
Water Res ; 253: 121311, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367382

RESUMEN

The antagonistic effects of mercury (Hg) and selenium (Se) have been extensively studied in higher animals and plants. In this study, the microbial antagonistic effects of Hg and Se were utilized for wastewater treatment. We developed and optimized a new granular sludge approach to efficiently remove Hg(II) and Se(IV) from wastewater. Under anaerobic-oxic-anaerobic (AOA) conditions, the removal rates of Hg(II) and Se(IV) reached up to 99.91±0.07 % and 97.7 ± 0.8 %, respectively. The wastewater Hg(II) was mostly (97.43±0.01 %) converted to an inert mineral called tiemannite (HgSe) in the sludge, and no methylmercury (MeHg) was detected. The HgSe in sludge is less toxic, with almost no risk of secondary release, and it can be recovered with high purity. An inhibition experiment of mercury reduction and the high expression of the mer operon indicated that most Hg(II) (∼71 %) was first reduced to Hg0, and then Hg0 reacted with Se0 to synthesize HgSe. Metagenomic results showed that the final sludge (day 182) was dominated by two unclassified bacteria in the orders Rhodospirillales (27.7 %) and Xanthomonadales (6.3 %). Their metagenome-assembled genomes (MAGs) were recovered, suggesting that both of them can reduce Hg(II) and Se(IV). Metatranscriptomic analyses indicate that they can independently and cooperatively synthesize HgSe. In summary, granular sludge under AOA conditions is an efficient method for removing and recovering Hg from wastewater. The microbial transformation of Hg2+to Hg0 to HgSe may occur widely in both engineering and natural ecosystems.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Selenio , Purificación del Agua , Animales , Selenio/metabolismo , Aguas del Alcantarillado/microbiología , Aguas Residuales , Ecosistema , Purificación del Agua/métodos
9.
Sci Total Environ ; 914: 169976, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199380

RESUMEN

The ubiquitous transparent exopolymer particles (TEPs) are an important organic carbon pool and an ideal microhabitat for bacteria in aquatic environments. They play a crucial role in the global carbon cycle. Organic matter transformation and carbon turnover in TEPs strongly depend on the assembly of their associated bacterial communities and enzyme activity. However, the mechanisms of bacterial community assembly and their potential effects on the organic carbon cycle in TEPs are still unclear. In this study, we comparatively explored the community assembly of TEP-associated bacteria and bacterioplankton from surface freshwater using metagenomics. It was found that the bacterial community assembly in TEPs followed a minority-dominant rule and was governed by homogeneous selection. Pseudomonadota and Actinomycetota, which are responsible for polysaccharide degradation, serve as taxon-specific biomarkers among the abundant and diverse bacteria in TEPs. The network of TEP-associated bacteria displayed stronger robustness than that of bacterioplankton. Bin 76 (majorly Acinetobacter) was the overwhelmingly dominant taxa in TEPs, whereas there was no clearly dominant taxa in TEP-free water. Exoenzyme analysis showed that 64 out of 71 identified polysaccharide hydrolases were markedly linked with the dominant bin 76 in TEPs, while no such linkage was observed for bacterioplankton. Generally, Acinetobacter, which is capable of utilizing polysaccharides, is preferred to be assembled in TEPs together with high polysaccharide hydrolase activity. This may significantly accelerate the turnover of organic carbon in the giant global TEP pool. These findings are important for a deep understanding of the carbon cycle in water.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Agua , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Agua/metabolismo , Polisacáridos/metabolismo , Bacterias/metabolismo , Carbono/metabolismo
10.
J Hazard Mater ; 465: 133170, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38064942

RESUMEN

More single-use plastics are accumulating in the environment, and likewise biodegradable plastics (BPs), which are being vigorously promoted, cannot escape the fate. Currently, studies on the actual degradation of BPs in open-air and freshwaters are underrepresented despite they are potentially headmost leakage and contamination sites for disposable BPs. Herein, we compared the degradation behavior of six BP materials and non-degradable polypropylene (PP) plastics over a 1-year in situ suspension in the high-humidity air, a eutrophic river, and an oligotrophic lake. Moreover, a 3-months laboratory incubation was performed to detect the release of dissolved organic carbon (DOC) from BPs. In both air and freshwaters, poly(p-dioxanone) (PPDO) degraded significantly while PP and polylactic acid (PLA) showed no signs of degradation. The average degradation rates of three poly(butylene adipate-co-terephthalate) (PBAT)-based films varied: 100% in river, 55% in lake, and 10% in air. In addition to PLA, surface chemical groups, hydrophilicity, and thermal stability of BPs changed, and microplastics were found on their surfaces. Correspondingly, BPs with faster degradation rates released relatively higher amounts of DOC. Environmental microbial and chemical characteristics may contribute to differences in BP degradation besides polymer specificity. Altogether, our results indicate the need for appropriate monitoring of BPs.

11.
Chemosphere ; 350: 141038, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147928

RESUMEN

Wastewater containing selenium (Se) and soil contaminated by mercury (Hg) are two environmental problems, but they are rarely considered for synergistic treatment. In this work, anaerobic granular sludge (AnGS) was used to address both of the aforementioned issues simultaneously. The performance and mechanisms of Se(IV) removal from wastewater and Hg(II) immobilization in soil were investigated using various technologies. The results of the reactor operation indicated that the AnGS efficiently removed Se from wastewater, with a removal rate of 99.94 ± 0.05%. The microbial communities in the AnGS could rapidly reduce Se(IV) to Se0 nanoparticles (SeNPs). However, the AnGS lost the ability to reduce Se(IV) once the Se0 content reached the saturation value of 5.68 g Se/L. The excess sludge of Se0-rich AnGS was applied to remediate soil contaminated with Hg(II). The Se0-rich AnGS largely decreased the percentage of soil Hg in the mobile, extractable phase, with up to 99.1 ± 0.3% immobilization. Soil Hg(II) and Hg0 can react with Se (-II) and Se0, respectively, to form HgSe. The formation of inert HgSe was an important pathway for immobilizing Hg. Subsequently, the pot experiments indicated that soil remediation using Se0-rich AnGS significantly decreased the Hg content in pea plants. Especially, the content of Hg decreased from 555 ± 100 to 24 ± 3 µg/kg in roots after remediation. In summary, AnGS is an efficient and cost-effective material for synergistically treating Se-contaminated wastewater and Hg-contaminated soil.


Asunto(s)
Mercurio , Selenio , Mercurio/metabolismo , Selenio/metabolismo , Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Suelo
12.
Bioresour Technol ; 389: 129795, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783240

RESUMEN

In this study, effects of three iron (oxyhydr)oxides on the biogas residue composting, i.e., composting with goethite (CFe1), hematite (CFe2) or magnetite (CFe3), were investigated. Results showed that composting performance of CFe1 was much better than those of CFe2 and CFe3. Addition of goethite increased temperature of CFe1 and enhanced lignin humification. More than 31.49% of Fe(III) in goethite was reduced to amorphous Fe(II) during the composting, suggesting that goethite worked as electron acceptor for microbial metabolism and heat generation. The functional bacteria Chloroflexi and Actinobacteria, and genes encoding key enzymes (AA1 family), which play essential roles in humification of lignin, were enriched in CFe1. Besides, goethite reduced 10.96% organic matter (OM) loss probably by increasing the molecular size and aggregation of OM for its protection during the composting. This study shows that adding goethite is an efficient strategy to enhancing the humification of lignin-rich biowaste.


Asunto(s)
Compostaje , Suelo , Compuestos Férricos , Lignina , Biocombustibles , Bacterias , Estiércol
13.
Environ Pollut ; 338: 122563, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717891

RESUMEN

Extracellular superoxide radical (O2•-) is ubiquitous in microbial environments and has significant implications for pollutant transformation. Microbial extracellular O2•- can be produced through multiple pathways, including electron leakage from the respiratory electron transport chain (ETC), NADPH oxidation by the transmembrane NADPH oxidase (NOX), and extracellular reactions. Extracellular O2•- significantly influences the geochemical processes of various substances, including toxic metals and refractory organic pollutants. On one hand, extracellular O2•- can react with variable-valence metals and detoxify certain highly toxic metals, such as As(III), Cr(VI), and Hg(II). On the other hand, extracellular O2•- can directly or indirectly (via Bio-Fenton) degrade many organic pollutants, including a variety of emerging contaminants. In this work, we summarize the production mechanisms of microbial extracellular O2•-, review its roles in the transformation of environmental pollutants, and discuss the potential applications, limiting factors, and future research directions in this field.


Asunto(s)
Contaminantes Ambientales , Superóxidos , NADPH Oxidasas/metabolismo , Respiración de la Célula , Metales , Contaminantes Ambientales/toxicidad , Oxidación-Reducción
14.
Life Sci Alliance ; 6(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37734869

RESUMEN

MAP4K1 has been identified as a cancer immunotherapy target. Whether and how cancer cell-intrinsic MAP4K1 contributes to glioblastoma multiforme (GBM) progression remains unclear. We found that MAP4K1 was highly expressed in the glioma cells of human GBM specimens. High levels of MAP4K1 mRNA were prevalent in IDH-WT and 1p/19q non-codeletion gliomas and correlated with poor prognosis of patients. MAP4K1 silencing inhibited GBM cell proliferation and glioma growth. Transcriptome analysis of GBM cells and patient samples showed that MAP4K1 modulated cytokine‒cytokine receptor interactions and chemokine signaling pathway, including IL-18R and IL-6R Importantly, MAP4K1 loss down-regulated membrane-bound IL-18R/IL-6R by inhibiting the PI3K-AKT pathway, whereas MAP4K1 restoration rescued this phenotype and therefore GBM cell proliferation. MAP4K1 deficiency abolished GBM cell pro-proliferation responses to IL-18, suggesting an oncogenic role of MAP4K1 via the intrinsic IL-18/IL-18R pathway. In addition, GBM cell-derived MAP4K1 impaired T-cell migration and reduced CD8+ T-cell infiltration in mouse glioma models. Together, our findings provide novel insight into the pathological significance of GBM cell-intrinsic MAP4K1 in driving tumor growth and immune evasion by remodeling cytokine-chemokine networks.


Asunto(s)
Glioblastoma , Glioma , Animales , Humanos , Ratones , Citocinas , Modelos Animales de Enfermedad , Glioblastoma/genética , Interleucina-18/genética , Fosfatidilinositol 3-Quinasas
15.
Sci Total Environ ; 898: 165513, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451442

RESUMEN

Colloids are common in mine waters and their chemistry and interactions are critical aspects of metal(loid)s cycling. Previous studies mostly focus on the colloidal transport of metal(loid)s in zones where rivers and soil profiles receive acid mine drainage (AMD). However, there is limited knowledge of the colloid and the associated toxic element behavior as the effluent flows through the coal waste dump, where a geochemical gradient is produced due to AMD reacting with waste rocks which have high acid-neutralization effects. Here, we investigated the geochemistry of Fe and co-occurring elements As, Ni, and Cu along the coal waste dump, in aqueous, colloidal, and precipitate phases, using micro/ultrafiltration combined with STEM, AFM-nanoIR, SEM-EDS, XRD, and FTIR analysis. The results demonstrated that a fast attenuation of H+, SO42-, and metal(loid)s happened as the effluent flowed through the waste-rock dump. The Fe, As, Ni, and Cu were distributed across all colloidal sizes and primarily transported in the nano-colloidal phase (3 kDa-0.1 µm). An increasing pH induced a higher percentage of large Fe colloid fractions (> 0.1 µm) associated with greater sequestration of trace metals, and the values for As from 39.5 % to 54.4 %, Ni from 40.8 % to 75.7 %, and Cu from 43.7 % to 56.0 %, respectively. The Fe-bearing colloids in AMD upstream (pH ≤ 3.0) were primarily composed of Fe-O-S and Fe-O-C with minor Al-Si-O and Ca-O-S, while in less acidic and alkaline sections (pH ≥ 4.1), they were composed of Fe-O with minor Ca-O-S. The iron colloid agglomerates associated with As, Ni, and Cu precipitated coupling the transformation of jarosite, and schwertmannite to ferrihydrite, goethite, and gypsum. These results demonstrate that the formation and transformation of Fe-bearing colloids response to this unique geochemical gradient help to understand the natural metal(loid)s attenuation along the coal waste dump.

16.
Environ Pollut ; 335: 122195, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451589

RESUMEN

The frequent outbreak and continuous expansion of harmful cyanobacteria blooms (HCBs) have become important environmental concerns and public health issues globally. In this study, the "micron-confined Fe(II)-modified-microcapturer (FMC)-triggered Fenton" technology was established as advanced process adaptable to the HCB treatment. Results show that 95.7-99.4% of cyanobacteria cells were captured and separated from the HCB water at the optimum doses of Fe(II) and H2O2 within only 30 s. The chain-like cyanobacteria of A. flos-aquae were easier to be collected by FMCs compared with the unicellular M. aeruginosa. It was confirmed by scanning electron microscopic observation and fluorescence staining flow cytometry measurement that the FMC-carrying Fe(II) played the roles of both cell-gripper and Fenton catalyst. During the one-step process, the FMC-triggered Fenton effectively inhibited the cyanobacteria regrowth via inactivating the cells, and meanwhile, the microcystins of LR and RR were removed. The analyses by continuous flow chemiluminescence and X-ray photoelectron spectroscopy denote that FMCs performed efficiently in capture and Fe(II)-catalytic oxidation through increasing mass transfer, exposing sufficient active reactive oxygen species active-sites on the FMC surface and accelerating electron transfer. The micron-field-confined cascade processes retained the robust performance of Fenton against the high pH of bulk HCB water. This novel interface-dependent Fenton method is a promising tool for HCB treatment owing to its great efficiency, versatility, rapidness and eco-environmental friendliness.


Asunto(s)
Cianobacterias , Microcistinas , Microcistinas/análisis , Peróxido de Hidrógeno/química , Agua , Compuestos Ferrosos
17.
Heliyon ; 9(6): e17034, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37484423

RESUMEN

Ubiquitous antibiotic resistance genes (ARGs) is a significant global human health concern. Surfactants have been extensively used worldwide, and the consumption of surfactants containing hygiene, cleaning agents and disinfectants was multiplied during COVID-19 pandemic, which have caused significantly increased pollution of surfactants in aquatic environment. Whether such ever-increasing surfactant concentration boost dissemination risk of ARGs still remains unknown. Here the effects of three typical surfactants such as sodium dodecyl sulfate, cetyltrimethylammonium bromide and benzalkonium chloride on the transformation of pUC19 plasmid (2686 bp)-borne ARGs to recipient bacteria E. coli DH5ɑ were investigated. It was found that these surfactants at environmental concentrations facilitated horizonal gene transfer (HGT) via transformation. The transformation triggering concentrations for the three surfactants were 0.25-0.34 mg/L with a maximum increased transformation frequency of 13.51-22.93-fold. The mechanisms involved in activated HGT of ARGs via transformation triggered by surfactants could be mainly attributed to the increased production of reactive oxygen species, which further enhanced cell membrane permeability. These findings provide new sights for understanding of ARG propagation and also imply that the drastic rise of surfactant concentration in aquatic environment may significantly increase the dissemination risk of antibiotic resistance.

19.
Water Res ; 242: 120224, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352673

RESUMEN

The frequent occurrence of epidemics around the world gives rise to increasing concerns of the pollution of pathogens and antibiotic resistant bacteria in water. This study investigated the impacts of virulence factors (VFs) on the removal of antibiotic resistant and pathogenic bacteria from municipal wastewater by ozone-free or ozone-encapsulated Fe(III)-coagulant-modified colloidal microbubbles (O3_free-CCMBs or O3-CCMBs). The highly interface-dependent process was initiated with cell-capture on the microbubble surface where the as-collected cells could be further inactivated with the bubble-released ozone and oxidative species if O3-CCMBs were used. The microbiome sequencing analyses denote that the O3_free-CCMB performance of antibiotic resistant and pathogenic bacteria removal was dependent on the virulence phenotypes related to cell-surface properties or structures. The adhesion-related VFs facilitated the effective attachment between cells and the coagulant-modified bubble-surface, which further enhanced cell inactivation by bubble-released ozone. On the contrary, the motility-related VFs might help cells to escape from the bubble capture by locomotion; however, this could be overcome by O3-CCMB-induced oxidative demolition of the movement structures. Besides, the microbubble performance was also impacted with the cell-membrane structure related to antibiotic resistance (i.e., efflux pumps) and the dissolved organic matter through promoting the surface-capture and decreasing the oxidation efficacy. The ozone-encapsulated microbubbles with surface functionalization are robust and promising tools in hampering antibiotic resistance and pathogenicity dissemination from wastewater to surface water environment; and awareness should be raised for the influence of virulence signatures on its performance.

20.
J Hazard Mater ; 457: 131730, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37269564

RESUMEN

As reservoirs of pathogens, antimicrobial resistant microorganisms and a wide variety of pollutants, hospital wastewaters (HWWs) need to be effectively treated before discharge. This study employed the functionalized colloidal microbubble technology as one-step fast HWW treatment. Inorganic coagulant (monomeric Fe(III)-coagulant or polymeric Al(III)-coagulant) and ozone were used as surface-decorator and gaseous core modifier, respectively. The Fe(III)- or Al(III)-modified colloidal gas (or, ozone) microbubbles (Fe(III)-CCGMBs, Fe(III)-CCOMBs, Al(III)-CCGMBs and Al(III)-CCOMBs) were constructed. Within 3 min, CCOMBs decreased CODCr and fecal coliform concentration to the levels meeting the national discharge standard for medical organization. Regrowth of bacteria was inhibited and biodegradability of organics was increased after the simultaneous oxidation and cell-inactivation process. The metagenomics analysis further reveals that Al(III)-CCOMBs performed best in capturing the virulence genes, antibiotic resistance genes and their potential hosts. The horizontal transfer of those harmful genes could be effectively hampered thanks to the removal of mobile genetic elements. Interestingly, the virulence factors of adherence, micronutrient uptake/acquisition and phase invasion could facilitate the interface-dominated capture. Featured as cascade processes of capture, oxidation and inactivation in the one-step operation, the robust Al(III)-CCOMB treatment is recommended for the HWW treatment and the protection of downstream aquatic environment.


Asunto(s)
Ozono , Aguas Residuales , Virulencia , Antibacterianos/farmacología , Compuestos Férricos , Farmacorresistencia Bacteriana/genética , Hospitales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...