Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
RSC Adv ; 14(43): 31367-31384, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39359341

RESUMEN

Essential oil of Acorus tatarinowii Schott (ATEO) have significant biological activity, but their physical and chemical properties are unstable and susceptible to interference by external factors, resulting in oxidation, decomposition, and isomerization of essential oils (EOs), ultimately diminishing the quality of EOs and escalating clinical risks. In this research, based on the concept of " combination of medicine and adjuvant, " the unsuitable stabilizer Cinnabaris in Lingzhu powder prescription was modified with a SiO2 surface to become a stabilizer suitable for Pickering emulsion. The modified Cinnabaris was synthesized, with a focus on exploring the surface modification of Cinnabaris to facilitate its role as a stabilizer in Pickering emulsion. Thermal stability studies showed that modified Cinnabaris-stabilized emulsion had higher EOs retention and lower peroxide value and hydrogen peroxide content. GC-MS analysis showed that the volatile components in the emulsion were more stable than the EOs. In vitro dissolution experiments showed that in the dissolution medium of artificial gastric juice and artificial intestinal juice, compared with the ATEO, the release in Pickering emulsion was faster within 48 h, indicating that the ATEO had been encapsulated in Pickering emulsion, which could improve the in vitro dissolution rate of EOs. This study convincingly demonstrates the potential of modified Cinnabaris-stabilized Pickering emulsion to improve the thermal stability and in vitro dissolution rate of EOs.

2.
Heliyon ; 10(18): e37700, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39364237

RESUMEN

Pheretima is a popular healthy food, but Pheretima and related foods have specific stenchy odor, especially after decocting or warm soaking, the odor is intense, resulting in nausea and vomiting. This indicates that the release of stenchy odor components is intensified when Pheretima was exposed to hot water. It is urgent to study the composition and release pattern of the stenchy odor components of Pheretima. In this study, a series of samples with different odors were prepared by the combination of SFE-CO2 and warm soaking. The results showed that the fishy and smoky odor of Pheretima were heavier, attributed to the components such as dimethyl trisulfide, TMA, and guaiacol. When Pheretima was exposed to hot water, the fishy odor increased sharply. Dimethyl trisulfide and TMA were the key odor components, especially the exposure of TMA increased by 2∼3 times after warm soaking. The volatilization rate of n-hexanal, TMA, dimethyl trisulfide and other components was found to be highly volatile, and the volatilization rate at 75 °C was 2.5 times that at room temperature. This study proved for the first time that stenchy odor substances include two categories: water-soluble and liposoluble. And found that the water-soluble odor components accelerate their exposure and volatilization in warm water, which is the scientific principle of "Pheretima smells worse exposed to water".

3.
J Ethnopharmacol ; 337(Pt 1): 118782, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236777

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by non-specific inflammation. Managing UC presents significant challenges due to its chronic nature and high recurrence rates. Indigo naturalis has emerged as a potential therapeutic agent in clinical UC treatment, demonstrating advantages in alleviating refractory UC and maintaining remission periods compared to other therapeutic approaches. AIM OF REVIEW: This review aims to elucidate the potential mechanisms underlying the therapeutic effects of indigo naturalis in UC treatment, assess its clinical efficacy, advantages, and limitations, and provide insights into methods and strategies for utilizing indigo naturalis in UC management. MATERIALS AND METHODS: Comprehensive data on indigo naturalis were collected from reputable online databases including PubMed, GreenMedical, Web of Science, Google Scholar, China National Knowledge Infrastructure Database, and National Intellectual Property Administration. RESULTS: Clinical studies have demonstrated that indigo naturalis, either alone or in combination with other drugs, yields favorable outcomes in UC treatment. Its mechanisms of action involve modulation of the AHR receptor, anti-inflammatory properties, regulation of intestinal flora, restoration of the intestinal barrier, and modulation of immunity. Despite its efficacy in managing refractory UC and prolonging remission periods, indigo naturalis treatment is associated with adverse reactions, quality variations, and inadequate pharmacokinetic investigations. CONCLUSION: The therapeutic effects of indigo naturalis in UC treatment are closely linked to its ability to regulate the AHR receptor, exert anti-inflammatory effects, mcodulate intestinal flora, restore the intestinal barrier, and regulate immunity. Addressing the current shortcomings, including adverse reactions, quality control issues, and insufficient pharmacokinetic data, is crucial for optimizing the clinical utility of indigo naturalis in UC management. By refining patient-centered treatment strategies, indigo naturalis holds promise for broader application in UC treatment, thereby alleviating the suffering of UC patients.

4.
Food Res Int ; 195: 114942, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277220

RESUMEN

Frankincense is an important seasoning and spice known for its distinctive and intricate flavor profile. Considering the considerable variation in the aromatic quality of frankincense due to geographical origin, species diversity and cultivation conditions, frankincense from major global origins was characterized holistically for the first time. The electronic nose (E-nose) with headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and sensory evaluation were implemented to characterize the aroma components of 21 commercial varieties of frankincense from around the world. The results showed that a total of 149 volatile organic compounds (VOCs) of 10 categories were identified in frankincense, among which the numbers of alcohols, terpenes and esters compounds accounted for 22.15 %, 18.79 % and 15.44 % of the total VOCs of frankincense, respectively. The PLS-DA model effectively distinguished frankincense from Oman/Somalia and other origins. Furthermore, the study identified two differential VOCs with VIP > 1 in three Asian countries and five in six African countries. The total VOCs content and sensory characteristic score of "Lemon/Citrus" in Oman frankincense is significantly higher than other regions. The OAV results showed that 61 substances (e.g., Diacety, alpha-Pinene, Camphene, Myrcene) as key aroma compounds and OICS model indicated that p-Cymenol was found to contribute significantly to the citrus aroma in frankincense. This study identified the fundamental components of frankincense flavor and revealed different flavor descriptors of frankincense, which are crucial for reconstructing frankincense flavor and improving flavor quality.


Asunto(s)
Nariz Electrónica , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Microextracción en Fase Sólida/métodos , Humanos , Femenino , Gusto , Masculino , Adulto , Olfato
5.
ACS Nano ; 18(34): 23428-23444, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39150010

RESUMEN

Wound rehabilitation is invariably time-consuming, scar formation further weakens therapeutic efficacy, and detailed mechanisms at the molecular level remain unclear. In this work, a Mo4/3B2-x nanoscaffold was fabricated and utilized for wound healing and scar removing in a mice model, while metabolomics was used to study the metabolic reprogramming of metabolome during therapy at the molecular level. The results showed that transition metal borides, called Mo4/3B2-x nanoscaffolds, could mimic superoxide dismutase and glutathione peroxidase to eliminate excess reactive oxygen species (ROS) in the wound microenvironment. During the therapeutic process, the Mo4/3B2-x nanoscaffold could facilitate the regeneration of wounds and removal of scars by regulating the biosynthesis of collagen, fibers, and blood vessels at the pathological, imaging, and molecular levels. Subsequent metabolomics study revealed that the Mo4/3B2-x nanoscaffold effectively ameliorated metabolic disorders in both wound and scar microenvironments through regulating ROS-related pathways including the amino acid metabolic process (including glycine and serine metabolism and glutamate metabolism) and the purine metabolic process. This study is anticipated to illuminate the potential clinical application of the Mo4/3B2-x nanoscaffold as an effective therapeutic agent in traumatic diseases and provide insights into the development of analytical methodology for interrogating wound healing and scar removal-related metabolic mechanisms.


Asunto(s)
Aminoácidos , Cicatriz , Purinas , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Cicatriz/metabolismo , Cicatriz/patología , Cicatriz/tratamiento farmacológico , Ratones , Aminoácidos/química , Aminoácidos/metabolismo , Purinas/química , Purinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Masculino
6.
ACS Appl Mater Interfaces ; 16(24): 30622-30635, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38857197

RESUMEN

Mo4/3B2-x nanosheets are newly developed, and 2D transition metal borides (MBene) were reported in 2021, but there is no report on their further applications and modification; hence, this article sheds light on the significance of potential biological prospects for future biomedical applications. Therefore, elucidation of the biocompatibility, biotoxicology, and bioactivity of Mo4/3B2-x nanosheets has been an urgent need to be fulfilled. Nanometabolomics (also referred as nanomaterials-based metabolomics) was first proposed and utilized in our previous work, which specialized in interpreting nanomaterials-induced metabolic reprogramming through aqueous metabolomics and lipidomics approach. Hence, nanometabolomics could be considered as a novel concept combining nanoscience and metabolomics to provide bioinformation on nanomaterials' biomedical applications. In this work, the safe range of concentration (<50 mg/L) with good biosafety toward human umbilical vein endothelial cells (HUVECs) was discovered. The low concentration (5 mg/L) and high concentration (50 mg/L) of Mo4/3B2-x nanosheets were utilized for the in vitro Mo4/3B2-x-cell interaction. Nanometabolomics has elucidated the biological prospective of Mo4/3B2-x nanosheets via monitoring its biocompatibility and metabolic shift of HUVECs. The results revealed that 50 mg/L Mo4/3B2-x nanosheets could lead to a stronger alteration of amino acid metabolism with disturbance of the corresponding amino acid-related pathways (including amino acid metabolism, amino acid degradation, fatty acid biosynthesis, and lipid biosynthesis and metabolism). These interesting results were closely involved with the oxidative stress and production of excess ROS. This work could be regarded as a pathbreaking study on Mo4/3B2-x nanosheets at a biological level, which also designates their further biochemical, medical, and industrial application and development based on nanometabolomics bioinformation.


Asunto(s)
Aminoácidos , Células Endoteliales de la Vena Umbilical Humana , Nanoestructuras , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Nanoestructuras/química , Nanoestructuras/toxicidad , Metabolómica , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Compuestos de Boro/química , Compuestos de Boro/farmacología , Especies Reactivas de Oxígeno/metabolismo , Reprogramación Metabólica
7.
Phytother Res ; 38(7): 3782-3800, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839050

RESUMEN

Pediatric intestinal development is immature, vulnerable to external influences and produce a variety of intestinal diseases. At present, breakthroughs have been made in the treatment of pediatric intestinal diseases, but there are still many challenges, such as toxic side effects, drug resistance, and the lack of more effective treatments and specific drugs. In recent years, dietary polyphenols derived from plants have become a research hotspot in the treatment of pediatric intestinal diseases due to their outstanding pharmacological activities such, as anti-inflammatory, antibacterial, antioxidant and regulation of intestinal flora. This article reviewed the mechanism of action and clinical evidence of dietary polyphenols in the treatment of pediatric intestinal diseases, and discussed the influence of physiological characteristics of children on the efficacy of polyphenols, and finally prospected the new dosage forms of polyphenols in pediatrics.


Asunto(s)
Enfermedades Intestinales , Polifenoles , Humanos , Polifenoles/farmacología , Niño , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/dietoterapia , Enfermedades Intestinales/prevención & control , Antioxidantes/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Antiinflamatorios/farmacología , Dieta
8.
Cell Metab ; 36(9): 2054-2068.e14, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38906140

RESUMEN

Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Astrocitos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Mitocondrias , Neuronas , Animales , Humanos , Masculino , Ratones , Factor 1 de Ribosilacion-ADP/metabolismo , Astrocitos/metabolismo , Células Cultivadas , Glucólisis , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Ácido Láctico/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neuronas/metabolismo
9.
ACS Omega ; 9(19): 20773-20790, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764633

RESUMEN

Lingzhu Pulvis is a classic formulation for treating febrile convulsions in children. However, Acorus tatarinowii essential oil (AT-EO) in this prescription is prone to volatilization and oxidation, compromising the efficacy and quality control of this formulation. Herein, based on the concept of "combination of medicine and adjuvant", Pickering emulsion technology was applied to enhance the stability of AT-EO using modified amber as a stabilizer. Amber was a resinous medicinal powder in Lingzhu Pulvis and was modified into a suitable stabilizer for Pickering emulsion through surface modification. A thermal stability study indicated that Pickering emulsion, stabilized by modified amber, exhibited a higher retention rate of AT-EO and lower levels of peroxide value and malondialdehyde content compared to those of the pure AT-EO group after heat treatment at 40 °C for 1, 3, and 8 h. Additionally, component analysis in content and composition revealed that the volatile components of AT-EO in the Pickering emulsion were more stable during the thermal treatment process. This study convincingly illustrates the potential of a Pickering emulsion stabilized with modified medicinal powders to improve the thermal stability of the essential oil.

10.
J Pharm Biomed Anal ; 246: 116219, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759325

RESUMEN

Qingwanzi Pills (QP) were first mentioned in the "Puji Fang" of the Ming Dynasty, with a history of approximately 600 years. The formula consisted of Gypsum Fibrosum and Indigo Naturalis. It is a famous classical formula with antipyretic effects frequently utilized in ancient China, although our knowledge about the overall antipyretic mechanism of QP remains limited. Therefore, we replicated the fever model in New Zealand rabbits induced by lipopolysaccharide, performed the pharmacodynamic evaluation of QP, identified the differential metabolites among QP groups, and performed pathway enrichment analysis to comparatively analyze the effects of QP on fever-related metabolic pathways by ultra-performance liquid chromatography-mass spectrometry. The results showed that the antipyretic effect of QP was superior to that of each disassembled prescription, with Gypsum Fibrosum primarily contributing to the efficacy, followed by Indigo Naturalis and Junci Medulla. QP had an effective antipyretic effect, which was related to lowering the levels of TNF-α, IL-6, IL-1ß, and calcium in rabbit serum, lowering the levels of PGE2 and cAMP in rabbit cerebrospinal fluid, and increasing the level of calcium in rabbit cerebrospinal fluid. A total of 27 endogenous biomarkers were screened by serum metabolomics for the treatment of fever with QP. It is hypothesized that the antipyretic mechanism of QP may be related to regulating α-linolenic acid, sphingolipid, tryptophan, and bile acid metabolism. In summary, QP exhibited a significant antipyretic effect in rabbits with lipopolysaccharide-induced fever.


Asunto(s)
Antipiréticos , Medicamentos Herbarios Chinos , Fiebre , Metabolómica , Animales , Conejos , Antipiréticos/farmacología , Medicamentos Herbarios Chinos/farmacología , Metabolómica/métodos , Fiebre/tratamiento farmacológico , Masculino , Modelos Animales de Enfermedad , Lipopolisacáridos/farmacología , Cromatografía Líquida de Alta Presión/métodos
11.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2699-2709, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812170

RESUMEN

A systematic evaluation of the differences in the chemical composition and efficacy of the different forms of Galli Gigerii Endothelium Corneum(GGEC) was conducted based on modern analytical techniques and a functional dyspepsia(FD) rat model, which clarifies the material basis of the digestive efficacy of GGEC. Proteins, enzymes, polysaccharides, amino acids, and flavonoids in GGEC powder and decoction were determined respectively. The total protein of the powder and decoction was 0.06% and 0.65%, respectively, and the pepsin and amylase potency of the powder was 27.03 and 44.05 U·mg~(-1) respectively. The polysaccharide of the decoction was 0.03%, and there was no polysaccharide detected in the powder. The total L-type amino acids in the powder and decoction were 279.81 and 8.27 mg·g~(-1) respectively, and the total flavonoid content was 59.51 µg·g~(-1). Enzymes and flavonoids were not detected in the decoction. The powder significantly reduced nutrient paste viscosity, while the decoction and control group showed no significant reduction in nutrient paste viscosity. FD rat models were prepared by iodoacetamide gavage and irregular diet. The results showed that both powder and decoction significantly increased the gastric emptying effect, small intestinal propulsion rate, digestive enzymes activity, gastrin(GAS), motilin(MTL), ghrelin(GHRL) and reduced vasoactive intestinal peptide(VIP), 3-(2-ammo-nioethyl)-5-hydroxy-1H-indolium maleate(5-HT), and somatostatin(SST) content in rats(P<0.05, P<0.01). Comparison of GGEC decoction and powder administration between groups of the same dosage level showed that gastrointestinal propulsion and serum levels of GAS, GHRL, VIP, and SST in the powder group were significantly superior to those in the decoction and that the gastrointestinal propulsion, as well as serum levels of MTL, GAS, and GHRL were slightly higher than those of the decoction with two times its raw dose, and the serum levels of SST, 5-HT, and VIP in the powder group were slightly lower than those of the decoction with two times its raw dose. In conclusion, both decoction and powder have therapeutic effects on FD, but there is a significant difference between the two effects. Under the same dosage, the digestive efficacy of the powder is significantly better than that of the decoction, and the decoction needs to increase the dosage to compensate for the efficacy. It is hypothesized that the digestive efficacy of the GGEC has a duality, and the digestive active ingredients of the powder may include enzymes and L-type amino acids, while the decoction mainly relies on L-type amino acids to exert its efficacy. This study provides new evidence to investigate the digestive active substances of the GGEC and to improve the effectiveness of the drug in the clinic.


Asunto(s)
Dispepsia , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Dispepsia/tratamiento farmacológico , Dispepsia/fisiopatología , Dispepsia/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Humanos , Flavonoides/química , Flavonoides/farmacología , Motilina , Péptido Intestinal Vasoactivo/metabolismo , Ghrelina , Somatostatina
12.
Int J Biol Macromol ; 271(Pt 2): 132708, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815948

RESUMEN

κ-Carrageenan (κ-Car) is an important material for preparing food gels and hydrogels. However, κ-Car gel has issues with high hardness and low water-holding capacity. Modification strategy of micronization is proposed for the first time to explore its influence on texture properties and gelling process of κ-Car gel, and to investigate the feasibility of κ-Car as a food matrix with low strength. κ-Car undergoing 60 min of micronization, the d(0.9) decreased by 79.33 %, SBET and Vtotal increased by 89.23 % and 95.27 %. The swelling rate and degree of gelling process increased significantly, and the microstructure changed from loose large pores to dense small pores resembling a "honeycomb". Importantly, the hardness of gel-60, Milk-60 and PNS-60 decreased by 72.52 %, 49.25 % and 81.37 %. In addition, WHC of gel-60, Milk-60 and PNS-60 was improved. IDDSI tests showed that κ-Car gels, milk gels and PNS gels can be categorized as level 6 (soft and bite-sized), except for PNS-60, which belongs to level 5 (crumbly and moist). Furthermore, the texture and bitter masking effect of milk gels and PNS gels were improved. In conclusion, this study demonstrated that micronization can be a novel approach to improve the gel properties of κ-Car, laying the groundwork for developing dysphagia foods.


Asunto(s)
Carragenina , Geles , Carragenina/química , Geles/química , Deglución , Leche/química , Animales , Dureza , Administración Oral , Hidrogeles/química
13.
Heliyon ; 10(5): e25909, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439839

RESUMEN

Objective: To investigate the stability of Acorus tatarinowii and Atractylodes lancea essential oils (ATaAL-EO) under a hot environment at 60 °C, and to analyze the differences in component, quantity, and quality changes, as well as variations in the main components, under different treatment methods of crude oil, ß-cyclodextrin inclusion of ATaAL-EO, and Pickering emulsion, to improve the stability and quality of ATaAL-EO. Methods: The stability of the ATaAL-EO group, the ß-cyclodextrin inclusion ATaAL-EO group, and the Pickering emulsion group were investigated under a 60 °C heat environment. Volatile oil retention rate and peroxide value were collected and measured. The volatile oil components of each group were determined by GC-MS, and t-tests were used to screen for differential components. PCA plots for each group were constructed using the OmicShare online platform. Line plots were generated using the Rmisc and reshape2 packages. Upset Venn diagrams under different hot environments were created using the OmicShare online platform to identify quantitative and qualitative changing components and heat map stack plots for newly generated compounds and connected line plots for disappearing compounds were produced for each group. Boxplots for the main component compounds under different hot environments were generated using the reshape2 and ggplot2 packages. Results: In a hot environment of 60 °C, the ß-cyclodextrin inclusion ATaAL-EO and Pickering emulsion group with 1, 3, and 8 h of placement showed higher retention and lower oxidation degree compared to the stability of the ATaAL-EO group. GC-MS analysis results showed that the stability of volatile components in the Pickering emulsion group and ß-cyclodextrin inclusion ATaAL-EO group was significantly improved compared to the crude oil group. Conclusion: ß-cyclodextrin inclusion complexes with ATaAL-EO, as well as Pickering emulsions, can significantly enhance the stability and quality of ATaAL-EO. Pickering emulsions have more advantages.

14.
J Pharm Biomed Anal ; 243: 116115, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513497

RESUMEN

Crocus sativus L. (C. sativus) has its stigma as the main valuable part used. With extremely low production and high prices, stigma is considered a scarce resource. As a result, its petals, considered as by-products, are often discarded, leading to significant waste. We developed a UPLC-Q-Orbitrap HRMS method for qualitative analysis of stigmas and petals and a UHPLC-QQQ-MS/MS method for simultaneous quantification of 9 characteristic active compounds for the first time, and compared their biological activity in vitro. The results indicated that a total of 63 compounds were identified in the petals and stigmas. The content of flavonoids in the petals was significantly superior to that in the stigma, and the content of quercetin in the petals was 50 times higher than that in the stigma. The results of the in vitro evaluation of biological activity indicated that both the petals (•OH: IC50=39.70 mg/mL; DPPH: IC50=28.37 mg/mL; ABTS: IC50=0.9868 mg/mL)and stigma (•OH: IC50=34.41 mg/mL; DPPH: IC50=38.99 mg/mL; ABTS: IC50=3.194 mg/mL)demonstrated comparable antioxidant activities. However, the tyrosinase inhibitory activity in petals (IC50=21.17 mg/mL) was weaker than that in stigma(IC50=1.488 mg/mL). This study provides a fast, reliable, and efficient analytical method that can be used for the quality assessment of petals as a natural resource and its related products in the food and pharmaceutical industries.


Asunto(s)
Antioxidantes , Benzotiazoles , Ácidos Sulfónicos , Espectrometría de Masas en Tándem , Antioxidantes/farmacología , Flavonoides/farmacología , Quercetina , Extractos Vegetales/farmacología
15.
Ageing Res Rev ; 96: 102248, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38408490

RESUMEN

Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ferroptosis , Enfermedades Mitocondriales , Humanos , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/patología , Convulsiones/complicaciones , Convulsiones/metabolismo , Convulsiones/patología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología
16.
J Pharm Biomed Anal ; 241: 115960, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237545

RESUMEN

The Phyllanthus emblica Linn. fruit (PEF) is a well-known medicinal and food homologous item in tropical Southeast Asian. During the drying and storing processes, some PEF will grow white frost on its surface, which is typically taken as a sign of greater quality. However, the material basis and formation mechanism of white frost on PEF surfaces are currently unclear, and there is no sufficient evidence to support the correlation between white frost on PEF surfaces and their quality. In this paper, high-performance liquid chromatography (HPLC) was used to study the differences in active ingredient content of PEF medicinal materials with and without frost. The microstructure and elemental composition of white frost were studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The Fourier transform infrared spectroscopy (FT-IR) was used to analysis the main functional groups in white frost. The ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) combined with UNIFI database, EDS and FT-IR results, and reference materials were used to identify the chemical composition of white frost. The exocarp of PEF before and after drying and storage was analyzed by spatial metabolomics using desorption electrospray ionization (DESI) mass spectrometry imaging system to reveal the formation mechanism of white frost on the surface of PEF. The results found that the PEF with frost have higher levels of active ingredients than those without frost. EDS and FT-IR results show that white frost is mainly composed of C, O, K elements, and contains a large number of phenolic hydroxyl, carboxyl etc. UPLC-Q-TOF-MS/MS results found that the main components of white frost were organic acids, fatty acids, and tannins, including quality markers such as gallic acid and ellagic acid etc. Spatial metabolomics research found that the white frost formation mechanism mainly involved in the ascorbate and aldarate metabolism, cutin, suberin and wax biosynthesis, citrate cycle (TCA cycle) and biosynthesis of unsaturated fatty acid. This study reveals the material basis, formation mechanism, and relationship between the surface white frost of PEF and the quality of medicinal materials, providing valuable information for the quality evaluation of PEF.


Asunto(s)
Phyllanthus emblica , Espectrometría de Masas en Tándem , Phyllanthus emblica/química , Frutas/química , Espectroscopía Infrarroja por Transformada de Fourier , Metabolómica , Cromatografía Líquida de Alta Presión/métodos
17.
Food Chem ; 441: 138340, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38176146

RESUMEN

This present study investigated the masking effect of high methoxyl pectin, xanthan gum, and gum Arabic on the astringency of the traditional herbal formula Triphala and further examined the mechanism of polysaccharide reducing astringency. Results of sensory evaluation and electronic tongue illustrated that 0.6 % pectin, 0.3 % xanthan gum, and 2 % gum Arabic had a substantial deastringent effect. The polyphenols in Triphala are basically hydrolysable tannins, which with high degree of gallic acylation may be the main astringent component of Triphala. Moreover, the three polysaccharides can combine with ß-casein through CO and NH groups to form soluble binary complexes and decrease the secondary structure of ß-casein. When polysaccharides were added to the Triphala-protein system, polyphenol-protein precipitation was also diminished, and they were capable of forming soluble ternary complexes. Consequently, the competition between polysaccharides and polyphenols for binding salivary proteins and the formation of ternary complexes help decrease the astringency of Triphala.


Asunto(s)
Caseínas , Goma Arábiga , Extractos Vegetales , Goma Arábiga/química , Polisacáridos/química , Pectinas/química , Polifenoles , Astringentes
18.
J Ethnopharmacol ; 324: 117733, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38218504

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginger is a "medicine-food homology" natural herb and has a longstanding medicinal background in treating intestinal diseases. Its remarkable bioactivities, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, and anticancer properties, make it a promising natural medicine for colorectal cancer (CRC) prevention and treatment. AIM OF THE REVIEW: The purpose is to review the relevant literature on ginger and pharmacodynamic components for CRC prevention and treatment, summarize the possible mechanisms of ginger from clinical studies and animal and in vitro experiments, to provide theoretical support for the use of ginger preparations in the daily prevention and clinical treatment of CRC. MATERIALS AND METHODS: Literatures about ginger and CRC were searched from electronic databases, such as PubMed, Web of Science, ScienceDirect, Google Scholar and China National Knowledge Infrastructure (CNKI). RESULTS: This article summarizes the molecular mechanisms of ginger and its pharmacodynamic components in the prevention and treatment of CRC, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, inhibit CRC cell proliferation, induce CRC cell cycle blockage, promote CRC cell apoptosis, suppress CRC cell invasion and migration, enhance the anticancer effect of chemotherapeutic drugs. CONCLUSIONS: Ginger has potential for daily prevention and clinical treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Zingiber officinale , Animales , Antioxidantes/farmacología , Intestinos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/metabolismo , Antiinflamatorios/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química
19.
J Mater Chem B ; 12(3): 730-741, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165726

RESUMEN

Melanoma, the most aggressive and life-threatening form of skin cancer, lacks innovative therapeutic approaches and deeper bioinformation. In this study, we developed a photothermal therapy (PTT) based on Mo2C nanosheets to eliminate melanoma while utilizing integrated metabolomics to investigate the metabolic shift of metabolome combined lipidome during PTT at the molecular level. Our results demonstrated that 1 mg ml-1 Mo2C nanosheets could efficiently convert laser energy into heat with a strong and stable photothermal effect (74 ± 0.9 °C within 7 cycles). Furthermore, Mo2C-based PTT led to a rapid decrease in melanoma volume (from 3.299 to 0 cm2) on the sixth day, indicating the effective elimination of melanoma. Subsequent integrated metabolomics analysis revealed significant changes in aqueous metabolites (including organic acids, amino acids, fatty acids, and amines) and lipid classes (including phospholipids, lysophospholipids, and sphingolipids), suggesting that melanoma caused substantial fluctuations in both metabolome and lipidome, while Mo2C-based PTT helped improve amino acid metabolism-related biological events (such as tryptophan metabolism) impaired by melanoma. These findings suggest that Mo2C nanosheets hold significant potential as an effective therapeutic agent for skin tumors, such as melanoma. Moreover, through exploring multidimensional bioinformation, integrated metabolomics technology provides novel insights for studying the metabolic effects of tumors, monitoring the correction of metabolic abnormalities by Mo2C nanosheet therapy, and evaluating the therapeutic effect on tumors.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Lipidómica , Terapia Fototérmica , Metaboloma , Homeostasis
20.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5410-5418, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114135

RESUMEN

Aconiti Lateralis Radix Praeparata polysaccharides(AP) are a class of bioactive macromolecules extracted from the herbs of Aconiti Lateralis Radix Praeparata and its various processed products. Since the AP was first separated in 1986, its pharmacological effects include immune regulation, anti-tumor, anti-depression, organ protection, hypoglycemia, and anti-inflammatory had been found. In recent years, with the development of polysaccharide extraction, separation, and structure identification technologies, more than 20 kinds of AP have been separated from Aconiti Lateralis Radix Praeparata and its processed products, and they have ob-vious differences in relative molecular weight, monosaccharide composition, glycosidic bond, structural characteristics, and biological activities. In particular, AP may be dissolved, degraded, or allosteric under the complex processing environment of fermentation, soaking, cooking, etc., leading to the diversified structure of AP, which provides a possibility for further understanding of the structure-activity relationship of AP. Therefore, this study systematically reviewed the research progress on the structure and structure-activity relationship of AP, summarized the biological activity and potential action mechanism of AP, and discussed the technical challenges in the development and application of AP, so as to promote the quality control and further development and utilization of AP.


Asunto(s)
Aconitum , Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Aconitum/química , Polisacáridos/farmacología , Relación Estructura-Actividad , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...