Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928011

RESUMEN

Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.


Asunto(s)
Adipocitos Beige , Termogénesis , Termogénesis/genética , Humanos , Adipocitos Beige/metabolismo , Animales , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Calcio/metabolismo , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Tejido Adiposo Beige/metabolismo
2.
bioRxiv ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38895352

RESUMEN

Alphaviruses are mosquito borne RNA viruses that are a reemerging public health threat. Alphaviruses have a broad host range, and can cause diverse disease outcomes like arthritis, and encephalitis. The host ubiquitin proteasome system (UPS) plays critical roles in regulating cellular processes to control the infections with various viruses, including alphaviruses. Previous studies suggest alphaviruses hijack UPS for virus infection, but the molecular mechanisms remain poorly characterized. In addition, whether certain E3 ubiquitin ligases or deubiquitinases act as alphavirus restriction factors remains poorly understood. Here, we employed a cDNA expression screen to identify E3 ubiquitin ligase TRIM32 as a novel intrinsic restriction factor against alphavirus infection, including VEEV-TC83, SINV, and ONNV. Ectopic expression of TRIM32 reduces alphavirus infection, whereas depletion of TRIM32 with CRISPR-Cas9 increases infection. We demonstrate that TRIM32 inhibits alphaviruses through a mechanism that is independent of the TRIM32-STING-IFN axis. Combining reverse genetics and biochemical assays, we found that TRIM32 interferes with genome translation after membrane fusion, prior to replication of the incoming viral genome. Furthermore, our data indicate that the monoubiquitination of TRIM32 is important for its antiviral activity. Notably, we also show two TRIM32 pathogenic mutants R394H and D487N, related to Limb-girdle muscular dystrophy (LGMD), have a loss of antiviral activity against VEEV-TC83. Collectively, these results reveal that TRIM32 acts as a novel intrinsic restriction factor suppressing alphavirus infection and provides insights into the interaction between alphaviruses and the host UPS.

3.
Front Plant Sci ; 15: 1410036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911979

RESUMEN

Human activities have increased nitrogen (N) and phosphorus (P) inputs to the Yellow River Delta and the supply level of N and P affects plant growth as well as ecosystem structure and function directly. However, the root growth, stoichiometry, and antioxidant system of plants in response to N and P additions, especially for herbaceous halophyte in the Yellow River Delta (YRD), remain unknown. A field experiment with N addition (0, 5, 15, and 45 g N m-2 yr-1, respectively) as the main plot, and P addition (0 and 1 g N m-2 yr-1, respectively) as the subplot, was carried out with a split-plot design to investigate the effects on the root morphology, stoichiometry, and antioxidant system of Suaeda salsa. The results showed that N addition significantly increased the above-ground and root biomass as well as shoot-root ratio of S. salsa, which had a significant interaction with P addition. The highest biomass was found in the treatment with 45 g N m-2 yr-1 combined with P addition. N addition significantly increased TN content and decreased C:N ratio of root, while P addition significantly increased TP content and decreased C:P ratio. The main root length (MRL), total root length (TRL), specific root length (SRL), and root tissue density (RTD) of S. salsa root were significantly affected by N addition and P addition, as well as their interaction. The treatments with or without P addition at the 45 g N m-2 yr-1 of N addition significantly increased the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities and soluble protein content of roots, decreased malondialdehyde (MDA) content. And there was a significant interaction between the N and P addition on SOD activity. Therefore, N and P additions could improve the growth of S. salsa by altering the root morphology, increasing the root nutrient content, and stimulating antioxidant system.

4.
Int J Biol Macromol ; 273(Pt 1): 133121, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876229

RESUMEN

GFP1, a sulfated polysaccharide extracted from Grateloupia filicina, exhibits remarkable immunomodulatory activity. To reduce the side effects of 5-fluorouracil (5-FU), GFP1 was employed as a macromolecular carrier to synthesize of GFP1-C-5-FU by reacting with carboxymethyl-5-fluorouracil (C-5-FU). Subsequently, this new compound was reacted with folic acid (FA) through an ester bond, forming novel conjugates named GFP1-C-5-FU-FA. Nuclear magnetic resonance analysis confirmed the formation of GFP1-C-5-FU-FA. In vitro drug release studies revealed that the cumulative release rate of C-5-FU reached 46.9 % in phosphate buffer (pH 7.4) after 96 h, a rate significantly higher than that of the control groups, indicating the controlled drug release behavior of GFP1-C-5-FU-FA. Additionally, in vitro anticancer assays demonstrated the potent anticancer activity of GFP1-C-5-FU-FA conjugates, as evidenced by the reduced viability of HeLa and AGS cancer cells, along with increased levels of apoptosis and cellular uptake. Western blot analysis indicated that the GFP1-C-5-FU-FA conjugate effectively enhanced phosphorylation in cancer cells through the NF-kB and MAPK pathways, thereby promoting apoptosis. These findings highlight the potential of folate-targeted conjugates in efficiently treating HeLa and AGS cancer cells in vitro and lay a robust theoretical groundwork for future in vivo anti-cancer research involving these cells.


Asunto(s)
Antineoplásicos , Fluorouracilo , Ácido Fólico , Polisacáridos , Fluorouracilo/farmacología , Fluorouracilo/química , Humanos , Ácido Fólico/química , Ácido Fólico/farmacología , Polisacáridos/química , Polisacáridos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Sulfatos/química , Células HeLa , Liberación de Fármacos , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Supervivencia Celular/efectos de los fármacos
5.
Front Plant Sci ; 15: 1384914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882576

RESUMEN

Isotopic signatures offer new methods, approaches, and perspectives for exploring the ecological adaptability and functions of plants. We examined pattern differences in the isotopic signatures (δ 13C, δ 15N, δ 34S) of Spartina alterniflora across varying plant life-death status along geographic clines. We extracted 539 sets of isotopic data from 57 publications covering 267 sites across a latitude range of over 23.8° along coastal wetlands. Responses of isotopic signatures to climate drivers (MAT and MAP) and the internal relationships between isotopic signatures were also detected. Results showed that the δ 13C, δ 15N, and δ 34S of S. alterniflora were -13.52 ± 0.83‰, 6.16 ± 0.14‰, and 4.01 ± 6.96‰, with a range of -17.44‰ to -11.00‰, -2.40‰ to 15.30‰, and -9.60‰ to 15.80‰, respectively. The latitudinal patterns of δ 13C, δ 15N, and δ 34S in S. alterniflora were shaped as a convex curve, a concave curve, and an increasing straight line, respectively. A decreasing straight line for δ 13C within the ranges of MAT was identified under plant life status. Plant life-death status shaped two nearly parallel decreasing straight lines for δ 34S in response to MAT, resulting in a concave curve of δ 34S for live S. alterniflora in response to MAP. The δ 15N of S. alterniflora significantly decreased with increasing δ 13C of S. alterniflora, except for plant death status. The δ 13C, δ 15N, and δ 34S of S. alterniflora are consistent with plant height, stem diameter, leaf traits, etc, showing general latitudinal patterns closely related to MAT. Plant life-death status altered the δ 15N (live: 6.55 ± 2.23‰; dead: -2.76 ± 2.72‰), latitudinal patterns of S. alterniflora and their responses to MAT, demonstrating strong ecological plasticity and adaptability across the geographic clines. The findings help in understanding the responses of latitudinal patterns of the δ 13C, δ 15N, and δ 34S isotope signatures of S. alterniflora in response plant life-death status, and provide evidence of robust ecological plasticity and adaptability across geographic clines.

6.
J Environ Manage ; 362: 121286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824886

RESUMEN

Water deficiency threatens the health and function of wetlands in semi-arid areas. Optimum re-watering is an effective method for close-to-natural restoration to mitigate wetland degradation. Although the ecological importance of optimal re-watering as a nature-based solution for promoting wetland plant growth has been widely recognized, the response mechanisms of seed germination and seedling growth to re-watering are still poorly understood despite their decisive impact on plant life history. To fill this gap, this study compared the characteristics of seed germination and seedling growth in Carex schmidtii under initial water content with three levels (30%, 50%, and 70%) and five re-watering treatments (maintained at constant water content and re-watering to 100% on 7th, 14th, 21st, and 28th day). Moreover, the degree of reserve mobilization during four germination stages (seed suckering, sprouting, 20% germination, and seedling growth) was investigated. The results showed that water deficiency and re-watering treatments significantly affected C. schmidtii seed germination, seedling growth, and reserve mobilization. Compared with the other treatments, 50% moisture content and re-watering to 100% on the 14th day (50%-RT3) treatment significantly improved germination traits (germination rate, daily germination rate, germination index, and vigor index) and seedling growth characteristics (shoot length, root length, shoot biomass, root biomass, and total biomass). Furthermore, the degree of mobilization of starch, soluble protein, fat, and soluble sugar accumulation in C. schmidtii seeds under 50%-RT3 was higher than that in the other treatments. The structural equation model showed that the characteristics of seed germination and seedling growth of C. schmidtii were directly related to water deficiency and re-watering treatments, whereas reserve mobilization indirectly affected seed germination and seedling growth. These findings demonstrated that water deficiency and re-watering treatments have a crucial regulatory effect on seed germination and seedling growth of wetland plant species through a dual mechanism. This study provides information for the formulation of an optimum re-watering strategy for wetland vegetation restoration in semi-arid areas of the world.


Asunto(s)
Germinación , Plantones , Semillas , Agua , Humedales , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo
7.
Small ; : e2400466, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38676346

RESUMEN

The efficient removal of droplets on solid surfaces holds significant importance in the field of fog collection, condensation heat transfer, and so on. However, on current typical surfaces, droplets are characterized by a passive and single removal mode, contingent on the traction force (e.g., capillary force, Laplace pressure, etc.) generated by the surface's physics and chemistry design, posing challenges for enhancing the efficiency of droplet removal. In this paper, an effective active strategy based on different removal modes is demonstrated on magnetic responsive polydimethylsiloxane (PDMS) superhydrophobic microplates (RM-MPSM). By regulating the parameters of microplates and droplet volume, different effective departure modes (top jumping and side departure) can be induced to facilitate the removal of droplets. Moreover, the removal volume of droplets through the side departure mode exhibits a significant reduction compared to that observed in the top jumping mode. The exceptional removal ability of RM-MPSM demonstrates adaptability to diverse functional applications: efficient fog collection, removal of condensation droplets and micro-particles. The efficient modes of droplet removal demonstrated in this work hold significant implications for broadening its application in many fields, such as droplet collection, heat transfer, and anti-icing.

8.
Ther Drug Monit ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38666475

RESUMEN

BACKGROUND: Lamotrigine is a new antiepileptic drug with substantial interindividual variability in its pharmacokinetics and therapeutic responses. This study aimed to develop population pharmacokinetic (PPK) models of lamotrigine and its N2-glucuronide metabolites for model-informed individualized therapy. METHODS: A total of 353 plasma concentrations from Chinese patients with epilepsy receiving oral lamotrigine were used to develop a population PPK model using a nonlinear mixed effects modeling method. One- and two-compartment models were applied to the nonmetabolite and metabolite model, respectively. Forward addition and backward elimination were used to establish the final model. Model validation was performed using standard goodness-of-fit, bootstrap, visual predictive checks, and normalized prediction distribution errors. Finally, simulations were performed to propose lamotrigine dosages in different situations to achieve trough concentrations within the reference interval (2.5-15 mg/L). RESULTS: For both final population PPK models, coadministration with valproic acid (VPA) or enzyme inducer, and body weight significantly affected lamotrigine clearance. The final models for lamotrigine clearance were and for nonmetabolite and metabolite models, respectively. The precision of the PPK parameters was acceptable, and the models exhibited good predictability. Monte Carlo simulations revealed that the lamotrigine dosage administered to patients combined with an enzyme inducer must be tripled that administered with VPA to reach the target trough concentration. CONCLUSIONS: Variability in the pharmacokinetics of lamotrigine is large. Coadministration of VPA or an enzyme inducer and body weight are the most important factors in lamotrigine clearance in Chinese patients with epilepsy. The developed population PPK models might support further optimization of lamotrigine dosing regimens.

9.
Int J Biol Macromol ; 267(Pt 1): 131162, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574931

RESUMEN

We developed an efficient mixed-strain co-fermentation method to increase the yield of quinoa ß-glucan (Q+). Using a 1:1 mass ratio of highly active dry yeast and Streptococcus thermophilus, solid-to-liquid ratio of 1:12 (g/mL), inoculum size of 3.8 % (mass fraction), fermentation at 32 °C for 27 h, we achieved the highest ß-glucan yield of (11.13 ± 0.80)%, representing remarkable 100.18 % increase in yield compared to quinoa ß-glucan(Q-) extracted using hot water. The structure of Q+ and Q- were confirmed through Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopies. Q+ contained 41.66 % ß-glucan, 3.93 % protein, 2.12 % uronic acid; Q- contained 37.21 % ß-glucan, 11.49 % protein, and 1.73 % uronic acid. The average molecular weight of Q+(75.37 kDa) was lower than that of Q- (94.47 kDa). Both Q+ and Q- promote RAW264.7 cell proliferation without displaying toxicity. They stimulate RAW264.7 cells through the NF-κB and MAPK signaling pathways, primarily inducing NO and pro-inflammatory cytokines by upregulating CD40 expression. Notably, Q+ exhibited stronger immunostimulatory activity compared to Q-. In summary, the fermentation enrichment method yields higher content of quinoa ß-glucan with increased purity and stronger immunostimulatory properties. Further study of its bioimmunological activity and structure-activity relationship may contribute to the development of new immunostimulants.


Asunto(s)
Chenopodium quinoa , Fermentación , beta-Glucanos , Chenopodium quinoa/química , Ratones , beta-Glucanos/química , beta-Glucanos/farmacología , beta-Glucanos/aislamiento & purificación , Animales , Células RAW 264.7 , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Proliferación Celular/efectos de los fármacos , Peso Molecular , Streptococcus thermophilus/química
10.
Eur J Nutr ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512357

RESUMEN

PURPOSE: The impact of dietary nutrients on body growth performance and the composition of gut microbes and metabolites is well-established. In this study, we aimed to determine whether dietary protein can regulate the physiological indexes and changes the intestinal tissue morphology in rats, and if dietary protein was a crucial regulatory factor for the composition, function, and metabolic pathways of the gut microbiota. METHOD: A total of thirty male Sprague Dawley (SD) rats (inbred strain, weighted 110 ± 10 g) were randomly assigned to receive diets containing animal-based protein (whey protein, WP), plant-based protein (soybean protein, SP), or a blended protein (soybean-whey proteins, S-WP) for a duration of 8 weeks. To investigate the effects of various protein supplement sources on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing association study and fecal metabolomics profiling on the SD rats. Additionally, we performed analyses of growth indexes, serum biochemical indexes, and intestinal morphology. RESULTS: The rats in S-WP and WP group exhibited a significantly higher body weight and digestibility of dietary protein compared to the SP group (P < 0.05). The serum total protein content of rats in the WP and S-WP groups was significantly higher (P < 0.05) than that in SP group, and the SP group exhibited significantly lower (P < 0.05) serum blood glucose levels compared to the other two groups. The morphological data showed the rats in the S-WP group exhibited significantly longer villus height and shallower crypt depth (P < 0.05) than the SP group. The gut microbial diversity of the SP and S-WP groups exhibited a higher level than that of the WP group, and the microbiomes of the WP and S-WP groups are more similar compared to those of the SP group. The Arachidonic acid metabolism pathway is the most significant KEGG pathway when comparing the WP group and the SP group, as well as when comparing the SP group and the S-WP group. CONCLUSION: The type of dietary proteins exerted a significant impact on the physiological indices of SD rats. Intake of S-WP diet can enhance energy provision, improve the body's digestion and absorption of nutrients, as well as promote intestinal tissue morphology. In addition, dietary protein plays a crucial role in modulating fecal metabolites by regulating the composition of the gut microbiota. Metabolomics analysis revealed that the changes in the levels of arachidonic acid metabolites and secondary bile acid metabolite induced by Clostridium_sensu_stricto_1 and [Eubacterium]_coprostanoligenes_group maybe the primarily causes of intestinal morphological differences.

11.
Bioanalysis ; 16(4): 233-243, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38334119

RESUMEN

Aims: To develop and validate a UHPLC-MS/MS method for lamotrigine (LTG) analysis in human plasma and evaluate its agreement with a homogenous enzyme immunoassay (HEIA). Materials & methods: The UHPLC-MS/MS method was developed and validated according to the USFDA/EMA guidelines. A Bland-Altman plot was used to evaluate the agreement between UHPLC-MS/MS and HEIA. Results: Samples were pretreated with one-step protein precipitation and separated in 2.6 min. The intra- and inter-day bias and imprecisions were -15.8 to 15.0% and less than 11.17%, respectively. The recovery and matrix factor were 98.30 to 111.97%. The mean overestimation of UHPLC-MS/MS compared with HEIA was 21.57%. Conclusion: A rapid, sensitive and robust UHPLC-MS/MS method for plasma LTG analysis was developed and validated and was a 21.57% overestimation compared with HEIA.


Asunto(s)
Anticonvulsivantes , Espectrometría de Masas en Tándem , Humanos , Lamotrigina , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Técnicas para Inmunoenzimas , Inmunoensayo/métodos , Reproducibilidad de los Resultados
12.
Foods ; 13(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338623

RESUMEN

The utilization of black beans as a protein-rich ingredient presents remarkable prospects in the protein food industry. The objective of this study was to assess the impact of germination treatment on the physicochemical, structural, and functional characteristics of a black bean protein isolate. The findings indicate that germination resulted in an increase in both the total and soluble protein contents of black beans, while SDS-PAGE demonstrated an increase in the proportion of 11S and 7S globulin subunits. After germination, the particle size of the black bean protein isolate decreased in the solution, while the absolute value of the zeta potential increased. The above results show that the stability of the solution was improved. The contents of ß-sheet and ß-turn gradually decreased, while the content of α-helix increased, and the fluorescence spectrum of the black bean protein isolate showed a red shift phenomenon, indicating that the structure of the protein isolate and its polypeptide chain were prolonged, and the foaming property, emulsification property and in vitro digestibility were significantly improved after germination. Therefore, germination not only improves functional properties, but also nutritional content.

13.
Diabetol Metab Syndr ; 16(1): 40, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341600

RESUMEN

BACKGROUND: Tubulointerstitial fibrosis plays an important role in the progression of diabetic kidney disease (DKD). Sacubitril/valsartan (Sac/Val) exerts a robust beneficial effect in DKD. However, the potential functional effect of Sac/Val on tubulointerstitial fibrosis in DKD is still largely unclear. METHODS: Streptozotocin-induced diabetic mice were given Sac/Val or Val by intragastric administration once a day for 12 weeks. The renal function, the pathological changes of tubule injury and tubulointerstitial fibrosis, as well as mitochondrial morphology of renal tubules in mice, were evaluated. Genome-wide gene expression analysis was performed to identify the potential mechanisms. Meanwhile, human tubular epithelial cells (HK-2) were cultured in high glucose condition containing LBQ657/valsartan (LBQ/Val). Further, mitochondrial functions and Sirt1/PGC1α pathway of tubular epithelial cells were assessed by Western blot, Real-time-PCR, JC-1, MitoSOX or MitoTracker. Finally, the Sirt1 specific inhibitor, EX527, was used to explore the potential effects of Sirt1 signaling in vivo and in vitro. RESULTS: We found that Sac/Val significantly ameliorated the decline of renal function and tubulointerstitial fibrosis in DKD mice. The enrichment analysis of gene expression indicated metabolism as an important modulator in DKD mice with Sac/Val administration, in which mitochondrial homeostasis plays a pivotal role. Then, the decreased expression of Tfam and Cox IV;, as well as changes of mitochondrial function and morphology, demonstrated the disruption of mitochondrial homeostasis under DKD conditions. Interestingly, Sac/Val administration was found to restore mitochondrial homeostasis in DKD mice and in vitro model of HK-2 cells. Further, we demonstrated that Sirt1/PGC1α, a crucial pathway in mitochondrial homeostasis, was activated by Sac/Val both in vivo and in vitro. Finally, the beneficial effects of Sac/Val on mitochondrial homeostasis and tubulointerstitial fibrosis was partially abolished in the presence of Sirt1 specific inhibitor. CONCLUSIONS: Taken together, we demonstrate that Sac/Val ameliorates tubulointerstitial fibrosis by restoring Sirt1/PGC1α pathway-mediated mitochondrial homeostasis in DKD, providing a theoretical basis for delaying the progression of DKD in clinical practice.

14.
Foods ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38254536

RESUMEN

Oat protein is unstable in intestinal fluid digestion, and it is easily degraded by trypsin and chymotrypsin, producing low molecular weight peptides. Endopeptidase hydrolysis can improve the bioavailability of active peptides and avoid further digestion in the gastrointestinal tract. Antimicrobial peptides (AMPs) can effectively improve host immunity, but most related studies focus on physiology and ecology, and there are few reports on their molecular level. Therefore, in this article, oat peptides were prepared via the simulated digestion method in vitro, and the main metabolites and action factors affecting colitis were screened by using the multi-omics methods in a high-throughput mode to analyze the effect and mechanism of colitis. Firstly, oat antimicrobial peptides were prepared from cationic resin combined with HPLC, and the anti-inflammatory effects of antimicrobial peptides were analyzed in vitro through the use of human colon epithelial (HCoEpiC) anti-inflammatory cells. In vivo experiments using rats have verified that AMPs can effectively prevent colitis caused by dextran sodium sulfate (DSS), reduce intestinal inflammatory cell infiltration and glandular disappearance in the colon, and reduce the apoptosis rate of colon cells. Secondly, metabolomics and transcriptomics were combined to analyze the mechanism of preventing enteritis, and it was found that oat antimicrobial peptides can promote DAG diglycerol production and inhibit the activation of T helper cells (TH), resulting in the down-regulation of key factors in the main downstream pathways of TH1, TH2 and TH17, and inhibit the production of inflammatory cells. At the same time, AMP can activate the wnt pathway, improve the expression of key genes of wnt and frizzled, promote the generation of intestinal stem cells, facilitate the differentiation and repair of intestinal epithelial cells, and prevent the generation of enteritis. Finally, the underlying genetic regulatory network of the important pathway was constructed from the effect of AMP on rat colitis.

15.
Food Chem ; 443: 138513, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277933

RESUMEN

Quantitative analysis of the quality constituents of Lonicera japonica (Jinyinhua [JYH]) using a feasible method provides important information on its evaluation and applications. Limitations of sample pretreatment, experimental site, and analysis time should be considered when identifying new methods. In response to these considerations, Raman spectroscopy combined with deep learning was used to establish a quantitative analysis model to determine the quality of JYH. Chlorogenic acid and total flavonoids were identified as analysis targets via network pharmacology. High performance liquid chromatograph and ultraviolet spectroscopy were used to construct standard curves for quantitative analysis. Raman spectra of JYH extracts (1200) were collected. Subsequently, models were built using partial least squares regression, Support Vector Machine, Back Propagation Neural Network, and One-dimensional Convolutional Neural Network (1D-CNN). Among these, the 1D-CNN model showed superior prediction capability and had higher accuracy (R2 = 0.971), and lower root mean square error, indicating its suitability for rapid quantitative analysis.


Asunto(s)
Medicamentos Herbarios Chinos , Lonicera , Lonicera/química , Espectrometría Raman , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Ácido Clorogénico/análisis
16.
Biomed Chromatogr ; 38(2): e5789, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037467

RESUMEN

A method using ultrahigh-performance liquid chromatography-tandem mass spectrometry was developed, validated, and applied to simultaneously determine plasma methotrexate (MTX) and 7-hydroxy-methotrexate (7-OH-MTX) in 117 patients with central nervous system (CNS) lymphoma. The ion transitions utilized were m/z 455.2 > 308.2 for MTX and m/z 471.2 > 324.1 for 7-OH-MTX. Samples were prepared through protein precipitation using methanol. Chromatographic separation was achieved within 3.0 min on a CMS9030 column (Ruixi, 2.1 × 50 mm, 3 µm) through a gradient elution of methanol and a 10% ammonium acetate solution at a flow rate of 0.4 mL/min. The method demonstrated linearity in the concentration range of 0.05-10 µM for MTX and 0.25-50 µM for 7-OH-MTX. The intra- and inter-day inaccuracy ranged from -7.38% to 7.83%, and the imprecision was less than 6.00% for both analytes. The recovery and matrix effect normalized by the internal standard (MTX-D3 ) remained consistent. Both analytes remained stable under nine different storage conditions. In patients with CNS lymphoma, MTX levels at 12 h and 7-OH-MTX levels at 12, 36, and 60 h after dosing in individuals with impaired renal function were significantly higher compared with those with normal renal function. 7-OH-MTX could potentially serve as a superior indicator for nephrotoxicity compared with MTX.


Asunto(s)
Linfoma , Metotrexato , Humanos , Metotrexato/uso terapéutico , Espectrometría de Masas en Tándem/métodos , Monitoreo de Drogas/métodos , Metanol , Cromatografía Líquida de Alta Presión/métodos , Sistema Nervioso Central/química , Sistema Nervioso Central/metabolismo , Linfoma/tratamiento farmacológico
17.
Front Nutr ; 10: 1276017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927498

RESUMEN

The objective of this paper was to study the effects of ultrafine grinding on the cation exchange capacity, glucose binding capacity and in vitro digestion characteristics of Tartary buckwheat powder. The results showed that the cation exchange ability and glucose binding strength of Tartary buckwheat powder, Tartary buckwheat bran powder and Tartary buckwheat core powder increased significantly with the increase of crushing frequency (20, 40 and 60 Hz), and the Tartary buckwheat bran powder was the highest. The results of in vitro digestion showed that ultrafine grinding improved the flavonoid release and antioxidant activity of Tartary buckwheat bran powder in the in vitro digestion process. The correlation analysis indicated that the amount of flavonoids released in digestive fluid was significantly related to antioxidant activity. This study may provide a theoretical basis for improving the physicochemical properties and functions of Tartary buckwheat by ultrafine grinding technology.

18.
Foods ; 12(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959088

RESUMEN

Hydrolysates of coix seed prolamins (CHPs) have an excellent hypoglycemic effect and can effectively inhibit α-glucosidase, which is the therapeutic target enzyme for type 2 diabetes mellitus. However, its hypoglycemic components and molecular mechanisms remain unclear, and its stability in food processing needs to be explored. In this study, four potential α-glucosidase inhibitory peptides (LFPSNPLA, FPCNPLV, HLPFNPQ, LLPFYPN) were identified and screened from CHPs using LC-MS/MS and virtual screening techniques. The results of molecular docking showed that the four peptides mainly inhibited α-glucosidase activity through hydrogen bonding and hydrophobic interactions, with Pro and Leu in the peptides playing important roles. In addition, CHPs can maintain good activity under high temperatures (40~100 °C) and weakly acidic or weakly alkaline conditions (pH 6.0~8.0). The addition of glucose (at 100 °C) and NaCl increased the inhibitory activity of α-glucosidase in CHPs. The addition of metal ions significantly decreased the inhibitory activity of α-glucosidase by CHPs, and their effects varied in magnitude with Cu2+ having the largest effect followed by Zn2+, Fe3+, K+, Mg2+, and Ca2+. These results further highlight the potential of CHPs as a foodborne hypoglycemic ingredient, providing a theoretical basis for the application of CHPs in the healthy food industry.

19.
Food Chem X ; 19: 100792, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780345

RESUMEN

A simple, fast, low cost, sensitive, intuitive, visual, label-free, and smartphone-assisted aptamer sensor based on colorimetric assay for the measurement of zearalenone was constructed. The nucleic acid aptamer of zearalenone was used as the recognition element and gold nanoparticles were used as the indicator. Several factors that could influence sensitivity, including the concentration of aptamer and NaCl, and incubation time, and specificity, have been investigated. The results showed that under the optimal conditions, the signal had a good linear relationship when zearalenone concentration is 5-300 ng/mL. A linear regression equation is Y = 0.0003X + 0.5128 (R2 = 0.9989) and a limit of detection is 5 ng/mL. The specificity of the sensor was good. Zearalenone in maize samples were successfully measured. The recoveries of Zearalenone are 81.3 %-96.4 %. The whole process takes only 15 min to complete. The smartphone assisted colorimetric aptamer sensor can be used for the detection of zearalenone in maize.

20.
Genes (Basel) ; 14(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37895249

RESUMEN

Cold exposure is an essential factor affecting breeding efforts in cold regions. Muscle, as an important tissue for homeothermic animals, can produce heat through shivering thermogenesis (ST) and non-shivering thermogenesis (NST) under cold exposure. Long non-coding RNAs (lncRNAs) play important roles in regulating gene expression. However, the regulatory mechanisms of lncRNAs and their role in the thermogenesis of pigs are unclear. We examined lncRNAs in the skeletal muscle of an indigenous pig breed, the Enshi black pig, when the pigs were exposed to acute or chronic cold. Three pigs were maintained inside a pig house (control group), three pigs were maintained outside the pig house for 55 d (chronic cold group), and three pigs were suddenly exposed to the conditions outside the pig house for 3 days (acute cold group). After the experiment, the longissimus dorsi of each pig were collected, and their lncRNA profiles were sequenced and analyzed. Each sample obtained nearly 12.56 Gb of clean data. A total of 11,605 non-coding RNAs were obtained, including 10,802 novel lncRNAs. The number of differentially expressed lncRNAs (DElncRNAs) was identified under acute cold (427) and cold acclimation (376), with 215 and 192 upregulated lncRNAs, respectively. However, only 113 lncRNAs were commonly upregulated by acute cold and cold acclimation. In addition, 65% of the target genes were trans-regulated by DElncRNAs. The target genes were enriched in signal transduction, immune system, cell growth and death pathways, and amino acid and carbohydrate metabolism. Compared to cold acclimation, acute cold stress-induced more DElncRNAs and response pathways. In conclusion, low temperatures altered the expression levels of lncRNAs and their target genes in muscle tissue. Some potential mechanisms were revealed, including ion migration and the metabolism of amino acids and carbohydrates.


Asunto(s)
ARN Largo no Codificante , Animales , Porcinos/genética , ARN Largo no Codificante/genética , Termogénesis/fisiología , Músculo Esquelético/fisiología , Frío , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...