Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(12): e0133023, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966249

RESUMEN

IMPORTANCE: The essential steps of successful gene delivery by recombinant adeno-associated viruses (rAAVs) include vector internalization, intracellular trafficking, nuclear import, uncoating, double-stranded (ds)DNA conversion, and transgene expression. rAAV2.5T has a chimeric capsid of AAV2 VP1u and AAV5 VP2 and VP3 with the mutation A581T. Our investigation revealed that KIAA0319L, the multiple AAV serotype receptor, is not essential for vector internalization but remains critical for efficient vector transduction to human airway epithelia. Additionally, we identified that a novel gene WDR63, whose cellular function is not well understood, plays an important role in vector transduction of human airway epithelia but not vector internalization and nuclear entry. Our study also discovered the substantial transduction potential of rAAV2.5T in basal stem cells of human airway epithelia, underscoring its utility in gene editing of human airways. Thus, the knowledge derived from this study holds promise for the advancement of gene therapy in the treatment of pulmonary genetic diseases.


Asunto(s)
Bronquios , Dependovirus , Epitelio , Técnicas de Transferencia de Gen , Vectores Genéticos , Transducción Genética , Humanos , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , ADN , Epitelio/metabolismo , Epitelio/virología , Técnicas de Transferencia de Gen/tendencias , Terapia Genética/métodos , Vectores Genéticos/genética , Bronquios/metabolismo , Bronquios/virología , Transporte Activo de Núcleo Celular , Edición Génica/tendencias
2.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808760

RESUMEN

Recombinant (r)AAV2.5T was selected from the directed evolution of an AAV capsid library in human airway epithelium (HAE). The capsid gene of rAAV2.5T is a chimera of the N-terminal unique coding sequence of AAV2 VP1 unique (VP1u) and the VP2- and VP3-coding sequence of AAV5 with a single amino acid mutation of A581T. We conducted two rounds of genome wide CRISPR gRNA library screening for host factors limiting rAAV2.5T transduction in HeLa S3 cells. The screen identified several genes that are critical for rAAV2.5T transduction in HeLa S3 cells, including previously reported genes KIAA0319L , TM9SF2 , VPS51 , and VPS54 , as well as a novel gene WDR63 . We verified the role of KIAA0319L and WDR63 in rAAV2.5T transduction of polarized HAE by utilizing CRISPR gene knockouts. Although KIAA0319L, a proteinaceous receptor for multiple AAV serotypes, played an essential role in rAAV2.5T transduction of polarized HAE either from apical or basolateral side, our findings demonstrated that the internalization of rAAV2.5T was independent of KIAA0319L. Importantly, we confirmed WDR63 is an important player in rAAV2.5T transduction of HAE, while not being involved in vector internalization and nuclear entry. Furthermore, we identified that the basal stem cells of HAE can be significantly transduced by rAAV2.5T. Significance: The essential steps of a successful gene delivery by rAAV include vector internalization, intracellular trafficking, nuclear import, uncoating, double-stranded (ds)DNA conversion, and transgene expression. rAAV2.5T has a chimeric capsid of AAV2 VP1u and AAV5 VP2 and VP3 with the mutation A581T. Our investigation revealed that KIAA0319L, the multiple AAV serotype receptor, is not essential for vector internalization but remains critical for efficient vector transduction to human airway epithelia. Additionally, we identified that a novel gene WDR63 , whose cellular function is not well understood, plays an important role in vector transduction of human airway epithelia but not vector internalization and nuclear entry. Our study also discovered the substantial transduction potential of rAAV2.5T in basal stem cells of human airway epithelia, underscoring its utility in gene editing of human airways. Thus, the knowledge derived from this study holds promise for the advancement of gene therapy in the treatment of pulmonary genetic diseases.

3.
Sci Adv ; 9(2): eade0869, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36630517

RESUMEN

Parvovirus B19 (B19V) infects human erythroid progenitor cells (EPCs) and causes several hematological disorders and fetal hydrops. Amino acid (aa) 5-68 of minor capsid protein VP1 (VP1u5-68aa) is the minimal receptor binding domain for B19V to enter EPCs. Here, we carried out a genome-wide CRISPR-Cas9 guide RNA screen and identified tyrosine protein kinase receptor UFO (AXL) as a proteinaceous receptor for B19V infection of EPCs. AXL gene silencing in ex vivo expanded EPCs remarkably decreased B19V internalization and replication. Additions of the recombinant AXL extracellular domain or a polyclonal antibody against it upon infection efficiently inhibited B19V infection of ex vivo expanded EPCs. Moreover, B19V VP1u interacted with the recombinant AXL extracellular domain in vitro at a relatively high affinity (KD = 103 nM). Collectively, we provide evidence that AXL is a co-receptor for B19V infection of EPCs.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Eritema Infeccioso , Parvovirus B19 Humano , Humanos , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Eritema Infeccioso/metabolismo , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/metabolismo , Unión Proteica , Tirosina Quinasa del Receptor Axl/metabolismo
4.
mBio ; 12(3)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975939

RESUMEN

The spike (S) polypeptide of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) consists of the S1 and S2 subunits and is processed by cellular proteases at the S1/S2 boundary that contains a furin cleavage site (FCS), 682RRAR↓S686 Various deletions surrounding the FCS have been identified in patients. When SARS-CoV-2 propagated in Vero cells, it acquired deletions surrounding the FCS. We studied the viral transcriptome in Vero cell-derived SARS-CoV-2-infected primary human airway epithelia (HAE) cultured at an air-liquid interface (ALI) with an emphasis on the viral genome stability of the FCS. While we found overall the viral transcriptome is similar to that generated from infected Vero cells, we identified a high percentage of mutated viral genome and transcripts in HAE-ALI. Two highly frequent deletions were found at the FCS region: a 12 amino acid deletion (678TNSPRRAR↓SVAS689) that contains the underlined FCS and a 5 amino acid deletion (675QTQTN679) that is two amino acids upstream of the FCS. Further studies on the dynamics of the FCS deletions in apically released virions from 11 infected HAE-ALI cultures of both healthy and lung disease donors revealed that the selective pressure for the FCS maintains the FCS stably in 9 HAE-ALI cultures but with 2 exceptions, in which the FCS deletions are retained at a high rate of >40% after infection of ≥13 days. Our study presents evidence for the role of unique properties of human airway epithelia in the dynamics of the FCS region during infection of human airways, which is likely donor dependent.IMPORTANCE Polarized human airway epithelia at an air-liquid interface (HAE-ALI) are an in vitro model that supports efficient infection of SARS-CoV-2. The spike (S) protein of SARS-CoV-2 contains a furin cleavage site (FCS) at the boundary of the S1 and S2 domains which distinguishes it from SARS-CoV. However, FCS deletion mutants have been identified in patients and in vitro cell cultures, and how the airway epithelial cells maintain the unique FCS remains unknown. We found that HAE-ALI cultures were capable of suppressing two prevalent FCS deletion mutants (Δ678TNSPRRAR↓SVAS689 and Δ675QTQTN679) that were selected during propagation in Vero cells. While such suppression was observed in 9 out of 11 of the tested HAE-ALI cultures derived from independent donors, 2 exceptions that retained a high rate of FCS deletions were also found. Our results present evidence of the donor-dependent properties of human airway epithelia in the evolution of the FCS during infection.


Asunto(s)
Bronquios/virología , Furina/metabolismo , Mucosa Respiratoria/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Transcriptoma , Animales , Bronquios/citología , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/virología , Humanos , RNA-Seq , Mucosa Respiratoria/citología , Eliminación de Secuencia , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
5.
Lab Chip ; 21(5): 904-915, 2021 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-33438699

RESUMEN

Asymmetric surface acoustic waves have been shown useful in separating particles and cells in many microfluidics designs, mostly notably sessile microdroplets. However, no one has successfully extracted target particles or cells for later use from such samples. We present a novel omnidirectional spiral surface acoustic wave (OSSAW) design that exploits a new cut of lithium niobate, 152 Y-rotated, to rapidly rotate a microliter sessile drop to ∼10 g, producing efficient multi-size particle separation. We further extract the separated particles for the first time, demonstrating the ability to target specific particles, for example, platelets from mouse blood for further integrated point-of-care diagnostics. Within ∼5 s of surface acoustic wave actuation, particles with diameter of 5 µm and 1 µm can be separated into two portions with a purity of 83% and 97%, respectively. Red blood cells and platelets within mouse blood are further demonstrated to be separated with a purity of 93% and 84%, respectively. These advancements potentially provide an effective platform for whole blood separation and point-of-care diagnostics without need for micro or nanoscale fluidic enclosures.


Asunto(s)
Microfluídica , Sonido , Animales , Separación Celular , Ratones
6.
Endocr Connect ; 3(4): 161-72, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25150251

RESUMEN

The endogenous estrogens are important modulators of the immune system and its functions. However, their effects are rather complex and many aspects have not been studied. In this study, we used the 1-chloro-2,4-dinitrobenzene (DNCB)-induced contact dermatitis as a disease model and investigated the effect of estriol (E3), along with two other estrogens, 17ß-estradiol and estrone, on the pathogenesis of contact hypersensitivity. A series of parameters, such as ear swelling, skin inflammation, antigen-specific immunoglobulins, and lymphocyte compositions in peripheral lymphoid organs, were evaluated in mice following development of contact dermatitis. We found that administration of all three estrogens elicited strong inhibition of DNCB-induced dermatitis, while E3 exerted the strongest suppressive effect. Administration of E3 alleviated dermatitis, and this effect was accompanied by decreases in serum DNCB-specific immunoglobulins, such as IgA, IgG1, IgG2a, and IgG2b. Besides, treatment with E3 reduced B cell population, especially IgG-producing cells in the peripheral lymphoid organs following the induction of dermatitis. These observations consistently suggest that the antibody (Ab)-mediated humoral immune reactions play a critical role in the pathogenesis of DNCB-induced contact dermatitis. The results from this study demonstrate, for the first time, that estrogen administration has a strong suppressive effect on the pathogenesis of contact dermatitis. These findings offer important insights concerning the pathogenic role of antigen-specific Abs in contact dermatitis and the treatment of chemical-induced, Ab-mediated skin hypersensitivity reactions in humans.

7.
Adv Pharmacol ; 66: 267-312, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23433459

RESUMEN

Protein kinase C-theta (PKCθ) is a protein kinase C (PKC) family member expressed predominantly in T lymphocytes, and extensive studies addressing its function have been conducted. PKCθ is the only T cell-expressed PKC that localizes selectively to the center of the immunological synapse (IS) following conventional T cell antigen stimulation, and this unique localization is essential for PKCθ-mediated downstream signaling. While playing a minor role in T cell development, early in vitro studies relying, among others, on the use of PKCθ-deficient (Prkcq(-/-)) T cells revealed that PKCθ is required for the activation and proliferation of mature T cells, reflecting its importance in activating the transcription factors nuclear factor kappa B, activator protein-1, and nuclear factor of activated T cells, as well as for the survival of activated T cells. Upon subsequent analysis of in vivo immune responses in Prkcq(-/-) mice, it became clear that PKCθ has a selective role in the immune system: it is required for experimental Th2- and Th17-mediated allergic and autoimmune diseases, respectively, and for alloimmune responses, but is dispensable for protective responses against pathogens and for graft-versus-leukemia responses. Surprisingly, PKCθ was recently found to be excluded from the IS of regulatory T cells and to negatively regulate their suppressive function. These attributes of PKCθ make it an attractive target for catalytic or allosteric inhibitors that are expected to selectively suppress harmful inflammatory and alloimmune responses without interfering with beneficial immunity to infections. Early progress in developing such drugs is being made, but additional studies on the role of PKCθ in the human immune system are urgently needed.


Asunto(s)
Enfermedades del Sistema Inmune/inmunología , Tolerancia Inmunológica , Sinapsis Inmunológicas/metabolismo , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Humanos , Enfermedades del Sistema Inmune/tratamiento farmacológico , Enfermedades del Sistema Inmune/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Sinapsis Inmunológicas/efectos de los fármacos , Sinapsis Inmunológicas/inmunología , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Terapia Molecular Dirigida , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/química , Proteína Quinasa C-theta , Transducción de Señal/efectos de los fármacos
8.
J Immunol ; 186(8): 4579-89, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21411729

RESUMEN

The Gads adaptor protein is critical for TCR-mediated Ca(2+) mobilization. We investigated the effect of Gads deficiency on the proliferation of CD8(+) T cells following peptide stimulation and in the context of infection with an intracellular pathogen. We stimulated CD8(+) T cells from Gads(+/+) OT-I and Gads(-/-) OT-I mice with cognate Ag (SIINFEKL) or altered peptide ligand. In vitro experiments revealed that Gads was required for optimal proliferation of CD8(+) T cells. This defect was most evident at the early time points of proliferation and when low doses of Ag were used as stimuli. Cell cycle analysis demonstrated that Gads(-/-) CD8(+) T cells had impaired TCR-mediated exit from the G(0) phase of the cell cycle. Furthermore, Gads(-/-) CD8(+) T cells had delayed expression of c-myc and CD69 upon the stimulation with SIINFEKL. We then investigated how Gads deficiency would impact CD8(+) T cell-mediated immunity in the context of infection with an intracellular pathogen. At early time points, Gads(+/+) and Gads(-/-) CD8(+) T cells proliferated to a similar extent, despite the fact that expression of CD69 and CD25 was reduced in the absence of Gads. After 5 d postinfection, Gads was required to sustain the expansion phase of the immune response; the peak response of Gads(-/-) cells was significantly lower than for Gads(+/+) cells. However, Gads was not required for the differentiation of naive CD8(+) T cells into memory cells. We conclude that the primary function of Gads is to regulate the sensitivity of the TCR to Ag ligation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Proliferación Celular , Inmunidad Celular/inmunología , Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ciclo Celular/inmunología , Femenino , Citometría de Flujo , Immunoblotting , Subunidad alfa del Receptor de Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Listeriosis/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/genética , Ovalbúmina/inmunología , Fragmentos de Péptidos/inmunología , Proteínas Proto-Oncogénicas c-myc/inmunología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
9.
Blood ; 115(5): 1070-80, 2010 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19861680

RESUMEN

Human parvovirus B19 (B19V) infection shows a strong erythroid tropism and drastically destroys erythroid progenitor cells, thus leading to most of the disease outcomes associated with B19V infection. In this study, we systematically examined the 3 B19V nonstructural proteins, 7.5 kDa, 11 kDa, and NS1, for their function in inducing apoptosis in transfection of primary ex vivo-expanded erythroid progenitor cells, in comparison with apoptosis induced during B19V infection. Our results show that 11 kDa is a more significant inducer of apoptosis than NS1, whereas 7.5 kDa does not induce apoptosis. Furthermore, we determined that caspase-10, an initiator caspase in death receptor signaling, is the most active caspase in apoptotic erythroid progenitors induced by 11 kDa and NS1 as well as during B19V infection. More importantly, cytoplasm-localized 11 kDa is expressed at least 100 times more than nucleus-localized NS1 at the protein level in primary erythroid progenitor cells infected with B19V; and inhibition of 11 kDa expression using antisense oligos targeting specifically to the 11 kDa-encoding mRNAs reduces apoptosis significantly during B19V infection of erythroid progenitor cells. Taken together, these results demonstrate that the 11 kDa protein contributes to erythroid progenitor cell death during B19V infection.


Asunto(s)
Apoptosis , Células Precursoras Eritroides/metabolismo , Parvovirus B19 Humano/genética , Proteínas no Estructurales Virales/genética , Clorometilcetonas de Aminoácidos/farmacología , Caspasa 10/metabolismo , Inhibidores de Caspasas , Línea Celular , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/virología , Citometría de Flujo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Immunoblotting , Etiquetado Corte-Fin in Situ , Células K562 , Peso Molecular , Parvovirus B19 Humano/metabolismo , Parvovirus B19 Humano/fisiología , Quinolinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/fisiología
10.
PLoS One ; 4(11): e7703, 2009 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-19890385

RESUMEN

BACKGROUND: Dinitrochlorobenzene-induced contact hypersensitivity is widely considered as a cell-mediated rather than antibody-mediated immune response. At present, very little is known about the role of antigen-specific antibodies and B cells in the development of dinitrochlorobenzene-induced hypersensitivity reactions, and this is the subject of the present investigation. METHODOLOGY/PRINCIPAL FINDINGS: Data obtained from multiple lines of experiments unequivocally showed that the formation of dinitrochlorobenzene-specific Abs played an important role in the development of dinitrochlorobenzene-induced contact hypersensitivity. The appearance of dinitrochlorobenzene-induced skin dermatitis matched in timing the appearance of the circulating dinitrochlorobenzene-specific antibodies. Adoptive transfer of sera containing dinitrochlorobenzene-specific antibodies from dinitrochlorobenzene-treated mice elicited a much stronger hypersensitivity reaction than the adoptive transfer of lymphocytes from the same donors. Moreover, dinitrochlorobenzene-induced contact hypersensitivity was strongly suppressed in B cell-deficient mice with no DNCB-specific antibodies. It was also observed that treatment of animals with dinitrochlorobenzene polarized Th cells into Th2 differentiation by increasing the production of Th2 cytokines while decreasing the production of Th1 cytokines. CONCLUSIONS/SIGNIFICANCE: In striking contrast to the long-held belief that dinitrochlorobenzene-induced contact hypersensitivity is a cell-mediated immune response, the results of our present study demonstrated that the production of dinitrochlorobenzene-specific antibodies by activated B cells played an indispensible role in the pathogenesis of dinitrochlorobenzene-induced CHS. These findings may provide new possibilities in the treatment of human contact hypersensitivity conditions.


Asunto(s)
Anticuerpos/metabolismo , Dermatitis Alérgica por Contacto/patología , Dinitroclorobenceno/toxicidad , Animales , Linfocitos B/efectos de los fármacos , Diferenciación Celular , Citocinas/metabolismo , Femenino , Inmunidad Celular/inmunología , Irritantes/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Piel/efectos de los fármacos , Células TH1/efectos de los fármacos , Células Th2/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...