Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(50): 6411-6414, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38828544

RESUMEN

We synthesized a low metal-to-sulfur atomic ratio (0.5) FeCoS4, exhibiting high reversible specific capacity. Reduced graphene oxide was covered on the surface to improve the cycling stability and rate performance further. Density functional theory calculations show that composite materials can effectively increase the adsorption energy and enhance the diffusion kinetics.

2.
Front Biosci (Landmark Ed) ; 29(2): 57, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38420795

RESUMEN

BACKGROUND: Colocasia esculenta L. Schott is a main traditional root crop in China, serving as an important vegetable and staple food. Drought stress plays vital role on the growth and development of taro corm. METHODS: Two different varieties of taro in Jiangsu were selected: Xiangsha taro and Longxiang taro. The accumulation characteristics, morphological structure, and physicochemical properties of taro corm starch were studied by microscopic observation, particle size analysis, and X-ray diffractometer (XRD) analysis. Transcriptome analyses were used to identify the related genes of taro corm under drought stress. RESULTS: During the growth of taro, the number of amyloplasts showed an obvious increasing trend and shifted from being dispersed throughout the cells to being gathered on one side of the cells, and morphological observations showed that smaller granular distribution gradually changed to a larger lumpy distribution. The particle size of Longxiang taro is smaller than that of Xiangsha taro. Under drought stress conditions, the occurrence of starch grains and corm size were inhibited in Xiangsha taro. Transcriptome sequencing of drought-stressed taro corms showed that the enzymes related to starch synthesis were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of drought-stressed taro corms showed that drought affected hormone signal transduction, material metabolism, drought stress tolerance, plant growth and development, and stress resistance, which triggered the plant drought adaptive response. CONCLUSIONS: Drought stress inhibits starch accumulation in taro.


Asunto(s)
Colocasia , Almidón , Almidón/química , Colocasia/genética , Colocasia/química , Sequías , Alimentos , China
3.
PeerJ ; 11: e15400, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37309370

RESUMEN

Background: Taro is an important potato crop, which can be used as food, vegetable, feed, and industrial raw material. The yield and quality of taro are primarily determined by the expansion degree of taro bulb and the filling condition of starch, whereas the expansion of taro bulb is a complex biological process. However, little information is reviewed on the research progress of bulb expansion and starch enrichment in taro. Methodology: PubMed, Web of Science, and the China National Knowledge Infrastructure databases were searched for relevant articles. After removing duplicate articles and articles with little relevance, 73 articles were selected for review. Results: This article introduces the formation and development of taro bulb for workers engaged in taro research. The content includes the process of amyloplast formation at the cytological level and changes in bulb expansion and starch enrichment at physiological levels, which involve endogenous hormones and key enzyme genes for starch synthesis. The effects of environment and cultivation methods on taro bulb expansion were also reviewed. Conclusions: Future research directions and research focus about the development of taro bulb were proposed. Limited research has been conducted on the physiological mechanism and hormone regulatory pathway of taro growth and development, taro bulb expansion, key gene expression, and starch enrichment. Therefore, the abovementioned research will become the key research direction in the future.


Asunto(s)
Colocasia , Humanos , China , Bases de Datos Factuales , Almidón , Verduras
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122277, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36592591

RESUMEN

Pesticide residues threaten the ecological environment and human health. Therefore, developing high performance SERS substrate to achieve highly sensitive detection of pesticide residues is meaningful. In this study, based on the strategy of combining "hot spots" engineering and material hybridization, we construct a novel hybrid SERS substrate by depositing Ag nanoflowers (NFs) on ZnO nanorods (NRs). Benefiting from the synergistic effect of electromagnetic enhancement and charge transfer effect, the Ag NFs@ZnO NRs substrate exhibits a low detection limit (10-13 M) for crystal violet molecules. This SERS substrate has good uniformity with a relative standard deviation of 7.463 %. Besides, owning to the photocatalytic property of ZnO NRs, the hybrid substrate can degrade probe molecules after SERS detection and realize recyclability. As a demonstration, we employed our SERS substrate for the trace detection of pesticide residues on apple surface and in river water. This study provides a new idea for improving the SERS performance of hybrid substrates.

5.
Analyst ; 147(7): 1257-1272, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35253817

RESUMEN

Surface enhanced Raman scattering (SERS) is a powerful spectral analysis technique and has exhibited remarkable application prospects in various fields. The design and fabrication of high-performance SERS substrates is key to promoting the development of SERS technology. Apart from noble metal substrates, non-metal substrates based on semiconductor materials have received increasing attention in recent years owing to their unique physical, chemical, and optical properties. However, compared with noble metal substrates, most semiconductor substrates show weak Raman enhancement ability. Therefore, exploring effective strategies to improve the SERS sensitivity is an urgent task. Numerous reviews have outlined the research progress of semiconductor SERS substrates, which mainly focused on summarizing the material category of semiconductor substrates. However, reviews that systematically summarize the strategies for improving the SERS performance of semiconductor substrates are lacking. In this review, we comprehensively discuss the research on semiconductor SERS from the aspects of mechanism, materials, and modification. Firstly, the Raman enhancement mechanism of semiconductor substrates and the SERS-active materials are discussed. Then, we summarize several effective approaches to boost the SERS performance of semiconductor substrates. In conclusion, we propose some prospects for this field.

6.
Int J Biol Macromol ; 194: 924-932, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852257

RESUMEN

The accumulation and physicochemical properties of starch affect the eating quality of taro corm. This study aims to investigate the accumulation, morphology, and physicochemical properties of starch from inner and outer tissues in the top, middle, and basal parts of taro corm. Structural and morphological observations showed that the inner tissues of the taro corm accumulated more starch, and the middle tissue had moderate amylose content and the largest granule diameter. Starch from different tissues exhibited A-type orthorhombic structure and similar nuclear magnetic resonance spectrum. The relative crystallinity of starch in the middle tissue was higher than that in the top and basal tissues. Compared with middle and basal tissues, starch from top tissue showed higher peak viscosity, pasting time, swelling power and solubility. Compared with the top and basal tissues, the middle tissue of taro corm exhibited higher index of eating quality including smell, texture, and total evaluation score. The results indicated that starches in various spatial parts of taro corm exhibit differences in accumulation, morphology, structure and physicochemical properties that lead to diverse eating qualities.


Asunto(s)
Fenómenos Químicos , Colocasia/química , Calidad de los Alimentos , Almidón/química , Amilosa/química , Especificidad de Órganos , Análisis Espectral
7.
Adv Sci (Weinh) ; 7(15): 2000470, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32775154

RESUMEN

Carbonaceous materials, especially with graphite-layers structure, as anode for potassium-ion batteries (PIBs), are the footstone for industrialization of PIBs. However, carbonaceous materials with graphite-layers structure usually suffer from poor cycle life and inferior stability, not to mention freestanding and flexible PIBs. Here, a freestanding and flexible 3D hybrid architecture by introducing carbon dots on the reduced graphene oxide surface (CDs@rGO) is synthesized as high performance PIBs anode. The CDs@rGO paper has efficient electron and ion transfer channels due to its unique structure, thus enhancing reaction kinetics. In addition, the CDs provide abundant defects and oxygen-containing functional groups, which can improve the electrochemical performance. This freestanding and flexible anode exhibits the high capacity of 310 mAh g-1 at 100 mA g-1, ultra-long cycle life (840 cycles with a capacity of 244 mAh g-1 at 200 mA g-1), and excellent rate performance (undergo six consecutive currents changing from 100 to 500 mA g-1, high capacity 185 mAh g-1 at 500 mA g-1), outperforming many existing carbonaceous PIB anodes. The results may provide a starting point for high-performance freestanding and flexible PIBs and promote the rapid development of next-generation flexible batteries.

8.
Small ; 14(30): e1801806, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29956476

RESUMEN

Potassium ion-batteries (PIBs) have attracted tremendous attention recently due to the abundance of potassium resources and the low standard electrode potential of potassium. Particularly, the solid-electrolyte interphase (SEI) in the anode of PIBs plays a vital role in battery security and battery cycling performance due to the highly reactive potassium. However, the SEI in the anode for PIBs with traditional electrolytes is mainly composed of organic compositions, which are highly reactive with air and water, resulting in inferior cycle performance and safety hazards. Herein, a highly stable and effective inorganic SEI layer in the anode is formed with optimized electrolyte. As expected, the PIBs exhibit an ultralong cycle performance over 14 000 cycles at 2000 mA g-1 and an ultrahigh average coulombic efficiency over 99.9%.

9.
Front Plant Sci ; 8: 1707, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29046684

RESUMEN

Drought stress is a significant abiotic stress factor that affects wheat yield and quality. MicroRNA (miRNA) plays an important role in regulating caryopsis development in response to drought stress. However, little is known about the expression characteristics of miRNAs and how they regulate protein accumulation in wheat caryopsis under drought stress. To address this, two small RNA libraries of wheat caryopsis under control and drought stress conditions were constructed and sequenced. A total of 125 miRNAs were identified in the two samples, of which 110 were known and 15 were novel. A total of 1,981 miRNA target genes were predicted and functional annotations were obtained from various databases for 1,641 of them. Four miRNAs were identified as differential expression under drought stress, and the expression patterns of three of them were consistent with results obtained by reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription quantitative polymerase chain reaction (RT-qPCR). Moreover, three miRNA-target pairs showed negative regulation tendency, as revealed by RT-qPCR. Functional enrichment and pathway analysis revealed that four pathways might be involved in storage protein biosynthesis. Furthermore, drought stress significantly increased the accumulation of protein bodies and protein content in wheat endosperm. In summary, our findings suggest that drought stress may enhance storage protein by regulating the expression of miRNAs and their target genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...