Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Neural Regen Res ; 20(3): 887-899, 2025 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886960

RESUMEN

JOURNAL/nrgr/04.03/01300535-202503000-00032/figure1/v/2024-06-17T092413Z/r/image-tiff Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, Sal) is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an environmental toxin that causes Parkinson's disease. However, the mechanism by which Sal mediates dopaminergic neuronal death remains unclear. In this study, we found that Sal significantly enhanced the global level of N6-methyladenosine (m6A) RNA methylation in PC12 cells, mainly by inducing the downregulation of the expression of m6A demethylases fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5). RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway. The m6A reader YTH domain-containing family protein 2 (YTHDF2) promoted the degradation of m6A-containing Yes-associated protein 1 (YAP1) mRNA, which is a downstream key effector in the Hippo signaling pathway. Additionally, downregulation of YAP1 promoted autophagy, indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity. These findings reveal the role of Sal on m6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy. Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.

2.
J Mass Spectrom ; 59(8): e5069, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38989730

RESUMEN

Cinnamomi ramulus (CR) is a common Chinese herbal medicine with a long history. It is often used to treat exogenous wind-cold diseases in clinic, but its chemical compositions remain to be studied. In this study, CR was extracted with 75% ethanol, and UPLC-Q-Orbitrap-MS combined with data post-processing method was used to identify the chemical components in the extract. Through this technology, the components in CR can be separated and accurately identified. A total of 61 compounds were identified, including 14 simple phenylpropanoids, 3 coumarins, 5 lignans, 14 flavonoids, 10 benzoic acids, 8 organic acids, and 7 others. This study confirmed the existence of these compounds in CR and speculated the cleavage pathways of each compound, which enriched the mass spectrometry data and cleavage rules. This study can provide a reference for CR and other research.


Asunto(s)
Cumarinas , Medicamentos Herbarios Chinos , Flavonoides , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Cumarinas/química , Cumarinas/análisis , Flavonoides/análisis , Flavonoides/química , Lignanos/análisis , Lignanos/química , Espectrometría de Masas/métodos , Cinnamomum/química , Espectrometría de Masas en Tándem/métodos
3.
J Colloid Interface Sci ; 674: 67-78, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909595

RESUMEN

In the wake of the carbon-neutral era, the exploration of innovative materials for energy storage and conversion has garnered increasing attention. While nickel silicates have been a focal point in energy storage research, their application in supercapacitors (SCs) has been relatively underreported due to poor conductivity. A newly designed architecture, designated as rGO@NiSiO@NiO/C (abbreviated for reduced graphene oxide (rGO), nickel silicate (NiSiO), nickel oxide/carbon (NiO/C)), has been developed to enhance the electrochemical performance of NiSiO. The incorporation of inner rGO provides structural support for NiSiO, enhancing conductivity, while the outer NiO/C layer not only boosts conductivity but also safeguards NiSiO from structural degradation and electrolyte dissolution. This architecture eliminates multi-phase mixtures, facilitating rapid electron/mass transfer kinetics and accelerating electrochemical reactions, resulting in exceptional electrochemical properties. The rGO@NiSiO@NiO/C architecture achieves a specific capacitance of 324F·g-1 at 0.5 A·g-1, with a superb cycle performance of âˆ¼ 91 % after 10,000 cycles, surpassing state-of-the-art nickel silicates. Furthermore, the hybrid supercapacitor (HSC) device incorporating the rGO@NiSiO@NiO/C electrode attains an areal capacitance of 159 mF·cm-2 at 2.5 mA·cm-2, a retention ratio of âˆ¼ 98 % after 10,000 cycles, and an energy density of 0.68 Wh·m-2 (26.7 Wh·kg-1) at 3.4 W·m-2 (343.8 W·kg-1). This study presents a layer-by-layer approach for constructing transition metal silicates/C architectures to enhance their electrochemical performance.

4.
Phytomedicine ; 130: 155655, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38838636

RESUMEN

BACKGROUND: The study of cardiotoxicity of drugs has become an important part of clinical safety evaluation of drugs. It is commonly known that podophyllotoxin (PPT) and its many derivatives and congeners are broad-spectrum pharmacologically active substances. Clinical cardiotoxicity of PPT and its derivatives has been raised, basic research on the mechanism of cardiotoxicity remains insufficient. PURPOSE: In present study, our group's innovative concept of toxicological evidence chain (TEC) was applied to reveal the cardiac toxicity mechanism of PPT by targeted metabolomics, TMT-based quantitative proteomics and western blot. METHODS: The injury phenotype evidence (IPE) acquired from the toxicity manifestations, such as weight and behavior observation of Sprague-Dawley rat. The damage to rat hearts were assessed through histopathological examination and myocardial enzymes levels, which were defined as Adverse Outcomes Evidence (AOE). The damage to rat hearts was assessed through histopathological examination and myocardial enzyme levels, which were defined as evidence of adverse outcomes.Overall measurements of targeted metabolomics based on energy metabolism and TMT-based quantitative proteomics were obtained after exposure to PPT to acquire the Toxic Event Evidence (TEE). The mechanism of cardiac toxicity was speculated based on the integrated analysis of targeted metabolomics and TMT-based quantitative proteomics, which was verified by western blot. RESULTS: The results indicated that exposure to PPT could result in significant elevation of myocardial enzymes and pathological alterations in rat hearts. In addition, we found that PPT caused disorders in cardiac energy metabolism, characterized by a decrease in energy metabolism fuels. TMT-based quantitative proteomics revealed that the PPAR (Peroxisome proliferators-activated receptor) signaling pathway needs further study. It is worth noting that PPT may suppress the expression of SIRT1, subsequently inhibiting AMPK, decreasing the expression of PGC-1α, PPARα and PPARγ. This results in disorders of glucose oxidation, glycolysis and ketone body metabolism. Additionally, the increase in the expression of p-IKK and p-IκBα, leads to the nuclear translocation of NF-κB p65 from the cytosol, thus triggering inflammation. CONCLUSION: This study comprehensively evaluated cardiac toxicity of PPT and initially revealed the mechanism of cardiotoxicity,suggesting that PPT induced disorders of energy metabolism and inflammation via SIRT1/PPAR/NF-κB axis, potentially contributing to cardiac injury.


Asunto(s)
FN-kappa B , Podofilotoxina , Sirtuina 1 , Animales , Masculino , Ratas , Cardiotoxicidad , Corazón/efectos de los fármacos , Lesiones Cardíacas/inducido químicamente , Lesiones Cardíacas/metabolismo , Metabolómica , Miocardio/metabolismo , Miocardio/patología , FN-kappa B/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacología , Proteómica , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo
5.
Med Ultrason ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38805620

RESUMEN

AIM: To explore whether ultrasound (US) can be employed to identify the underlying characteristics associated with pain in patients with podagra by evaluating the relationship between ultrasound findings and clinical pain. MATERIAL AND METHODS:  Patients with podagra were recruited and grouped into a pain group (G1, 82 patients) and a non pain group (G2, 123 patients). US features were collected and compared. US data were analyzed by binary logistic regression analysis and ROC analysis. Interobserver reliability was assessed, too. RESULTS: A total of 205 patients (196 male and 9 female) were enrolled in this study. In multivariate analysis, the thickness of the synovium (OR=1.928, CI=1.074-3.463), CD (color Doppler) signal of the synovium (OR=1.458, CI=1.011-2.103), and CD signal of the tophi (OR=1.576, CI=1.142-2.177) were identified as risk factors for clinical pain. Areas under the ROC curves (AUC) were 0.713, 0.686 and 0.641 for the three indicators, respectively. The best cutoff points were 1 mm for the thickness of the synovium, grade 1 for the CD signal of the synovium and grade 2 for the CD signal of the tophi. CONCLUSIONS: Ultrasound can provide valuable information for determining underlying features associated with pain in patients with podagra.

6.
J Colloid Interface Sci ; 669: 2-13, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38703578

RESUMEN

Aqueous nonmetallic ion batteries have garnered significant interest due to their cost-effectiveness, environmental sustainability, and inherent safety features. Specifically, ammonium ion (NH4+) as a charge carrier has garnered more and more attention recently. However, one of the persistent challenges is enhancing the electrochemical properties of vanadium dioxide (VO2) with a tunnel structure, which serves as a highly efficient NH4+ (de)intercalation host material. Herein, a novel architecture, wherein carbon-coated VO2 nanobelts (VO2@C) with a core-shell structure are engineered to augment NH4+ storage capabilities of VO2. In detail, VO2@C is synthesized via the glucose reduction of vanadium pentoxide under hydrothermal conditions. Experimental results manifest that the introduction of the carbon layer on VO2 nanobelts can enhance mass transfer, ion transport and electrochemical kinetics, thereby culminating in the improved NH4+ storage efficiency. VO2@C core-shell composite exhibits a remarkable specific capacity of ∼300 mAh/g at 0.1 A/g, which is superior to that of VO2 (∼238 mAh/g) and various other electrode materials used for NH4+ storage. The NH4+ storage mechanism can be elucidated by the reversible NH4+ (de)intercalation within the tunnel of VO2, facilitated by the dynamic formation and dissociation of hydrogen bonds. Furthermore, when integrated into a full battery with polyaniline (PANI) cathode, the VO2@C//PANI full battery demonstrates robust electrochemical performances, including a specific capacity of ∼185 mAh·g-1 at 0.2 A·g-1, remarkable durability of 93 % retention after 1500 cycles, as well as high energy density of 58 Wh·kg-1 at 5354 W·kg-1. This work provides a pioneering approach to design and explore composite materials for efficient NH4+ storage, offering significant implications for future battery technology enhancements.

7.
Proteomics Clin Appl ; : e2400006, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769866

RESUMEN

OBJECTIVE: To screen differentially expressed proteins (DEPs) in the saliva of Early childhood caries (ECC) with different degrees of severity. METHODS: The proteomic profiles of salivary of children with ECC of varying severity by data independent acquisition data independent acquisition (DIA) technique. A total of 12 preschool children aged 3-5 years were included in this study. RESULTS: In this study, a total of 15,083 peptides and 1944 proteins were quantified; The results of DEPs screening showed that 34 DEPs were identified between the group H and the group LC, including 18 up-regulated proteins and 16 down-regulated proteins; 34 DEPs were screened between the group H and the group HC, including 17 up-regulated proteins and 17 down-regulated proteins; 42 DEPs were screened between the group LC and the group HC, including 18 up-regulated proteins and 24 down-regulated proteins. Among these DEPs, we screened several key proteins that may play a role in ECC, such as MK, histone H4, TGFß3, ZG16B, MUC20, and SMR-3B. CONCLUSION: Salivary proteins, as important host factors of caries, are differentially expressed between the saliva of ECC children and healthy children. Specific DEPs are expected to become potential biomarkers for the diagnosis of ECC.

8.
Neurochem Res ; 49(8): 1993-2004, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782837

RESUMEN

Phosphodiesterase 8 (PDE8), as a member of PDE superfamily, specifically promotes the hydrolysis and degradation of intracellular cyclic adenosine monophosphate (cAMP), which may be associated with pathogenesis of Alzheimer's disease (AD). However, little is currently known about potential role in the central nervous system (CNS). Here we investigated the distribution and expression of PDE8 in brain of mouse, which we believe can provide evidence for studying the role of PDE8 in CNS and the relationship between PDE8 and AD. Here, C57BL/6J mice were used to observe the distribution patterns of two subtypes of PDE8, PDE8A and PDE8B, in different sexes in vivo by western blot (WB). Meanwhile, C57BL/6J mice were also used to demonstrate the distribution pattern of PDE8 in selected brain regions and localization in neural cells by WB and multiplex immunofluorescence staining. Furthermore, the triple transgenic (3×Tg-AD) mice and wild type (WT) mice of different ages were used to investigate the changes of PDE8 expression in the hippocampus and cerebral cortex during the progression of AD. PDE8 was found to be widely expressed in multiple tissues and organs including heart, kidney, stomach, brain, and liver, spleen, intestines, and uterus, with differences in expression levels between the two subtypes of PDE8A and PDE8B, as well as two sexes. Meanwhile, PDE8 was widely distributed in the brain, especially in areas closely related to cognitive function such as cerebellum, striatum, amygdala, cerebral cortex, and hippocampus, without differences between sexes. Furthermore, PDE8A was found to be expressed in neuronal cells, microglia and astrocytes, while PDE8B is only expressed in neuronal cells and microglia. PDE8A expression in the hippocampus of both female and male 3×Tg-AD mice was gradually increased with ages and PDE8B expression was upregulated only in cerebral cortex of female 3×Tg-AD mice with ages. However, the expression of PDE8A and PDE8B was apparently increased in both cerebral cortex and hippocampus in both female and male 10-month-old 3×Tg-AD mice compared WT mice. These results suggest that PDE8 may be associated with the progression of AD and is a potential target for its prevention and treatment in the future.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas , Enfermedad de Alzheimer , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/metabolismo , Femenino , Masculino , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/genética , Ratones , Encéfalo/metabolismo , Hipocampo/metabolismo
9.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38588467

RESUMEN

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Asunto(s)
Diseño de Fármacos , Elastina , Fibrosis Pulmonar , Receptores de Superficie Celular , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Animales , Ratones , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinasa 12 de la Matriz/metabolismo , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Ratones Endogámicos C57BL , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino
10.
Pediatr Res ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658664

RESUMEN

BACKGROUND: Hirschsprung disease (HSCR) is a congenital intestinal disease characterised by functional obstruction of the colon. Herein, we investigated the role and mechanism of the gene GFRA4 in HSCR. METHODS: GFRA4 expression in the ganglionic and aganglionic segment tissues in patients with HSCR and healthy colon tissues were detected using qRT-PCR, western blot, and immunohistochemistry. Cell proliferation, cycle distribution, apoptosis, changes in mitochondrial membrane potential, and differentiation were assessed in mouse enteric neural crest stem cells (ENCSCs) using the CCK-8 assay, EdU staining, flow cytometry, JC-1 probe, and immunofluorescence, respectively. GSEA analysis was performed to screen the signaling pathways regulated by GFRA4. RESULTS: GFRA4 was downregulated in aganglionic segment tissues compared to control and ganglionic segment tissues. GFRA4 overexpression promoted proliferation and differentiation, and inhibited apoptosis in ENCSCs, while GFRA4 down-regulation had the opposite result. GFRA4 activated the hedgehog pathway. GFRA4 overexpression enhanced the expression of key factors of the hedgehog pathway, including SMO, SHH, and GLI1. However, GFRA4 down-regulation reduced their expression. An antagonist of hedgehog pathway, cyclopamine, attenuated the effect of GFRA4 overexpression on proliferation, differentiation, and apoptosis of ENCSCs. CONCLUSION: GFRA4 promotes proliferation and differentiation but inhibits apoptosis of ENCSCs via the hedgehog pathway in HSCR. IMPACT: This study confirms that GFRA4 improves the proliferation and differentiation of ENCSCs via modulation of the hedgehog pathway. This study for the first time revealed the role and the mechanism of the action of GFRA4 in HSCR, which indicates that GFRA4 may play a role in the pathological development of HSCR. Our findings may lay the foundation for further investigation of the mechanisms underlying HSCR development and into targets of HSCR treatment.

11.
Front Pharmacol ; 15: 1363678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523634

RESUMEN

Diabetic nephropathy (DN) is the main cause of end-stage renal disease worldwide and a major public issue affecting the health of people. Therefore, it is essential to explore effective drugs for the treatment of DN. In this study, the traditional Chinese medicine (TCM) formula, Zhijun Tangshen Decoction (ZJTSD), a prescription modified from the classical formula Didang Decoction, has been used in the clinical treatment of DN. However, the chemical basis underlying the therapeutic effects of ZJTSD in treating DN remains unknown. In this study, compounds of ZJTSD and serum after oral administration in rats were identified and analyzed using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Meanwhile, a semi-quantitative approach was used to analyze the dynamic changes in the compounds of ZJTSD in vivo. UPLC-Q/TOF-MS analysis identified 190 compounds from ZJTSD, including flavonoids, anthraquinones, terpenoids, phenylpropanoids, alkaloids, and other categories. A total of 156 xenobiotics and metabolites, i.e., 51 prototype compounds and 105 metabolites, were identified from the compounds absorbed into the blood of rats treated with ZJTSD. The results further showed that 23 substances with high relative content, long retention time, and favorable pharmacokinetic characteristics in vivo deserved further investigations and validations of bioactivities. In conclusion, this study revealed the chemical basis underlying the complexity of ZJTSD and investigated the metabolite profiling and pharmacokinetics of ZJTSD-related xenobiotics in rats, thus providing a foundation for further investigation into the pharmacodynamic substance basis and metabolic regulations of ZJTSD.

12.
BMC Med Imaging ; 24(1): 69, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515047

RESUMEN

BACKGROUND: MRI has been widely used to predict the preoperative proliferative potential of pituitary adenoma (PA). However, the relationship between the cyst/tumor volume ratio (C/T ratio) and the proliferative potential of PA has not been reported. Herein, we determined the predictive value of the C/T ratio of PA for tumor cell proliferation. METHODS: The clinical data of 72 patients with PA and cystic change on MRI were retrospectively analyzed. PA volume, cyst volume, and C/T ratio were calculated. The corresponding intraoperative specimens were collected. Immunohistochemistry and hematoxylin-eosin staining were performed to evaluate the Ki67 index and nuclear atypia. Patients were categorized according to the Ki67 index (< 3% and ≥ 3%) and nuclear atypia (absence and presence). Univariate and multivariate analyses were used to identify the significant predictors of the Ki67 index and nuclear atypia. The receiver operating characteristic curve assessed the prediction ability of the significant predictors. RESULTS: Larger tumor volumes, smaller cyst volumes, and lower C/T ratios were found in patients with higher Ki67 indexes and those with nuclear atypia (P < 0.05). C/T ratio was an independent predictor of the Ki67 index (odds ratio = 0.010, 95% confidence interval = 0.000-0.462) and nuclear atypia (odds ratio = 0.010, 95% confidence interval = 0.000-0.250). The predictive value of the C/T ratio did not differ significantly from that of tumor volume (P > 0.05) but was better than that of cyst volume (P < 0.05). The area under the curve of the C/T ratio for predicting the Ki67 index and nuclear atypia was larger than that for predicting cyst volume and tumor volume. CONCLUSIONS: C/T ratios can be used to predict PA tumor proliferation preoperatively. Our findings may facilitate the selection of surgery timing and the efficacy evaluation of surgery.


Asunto(s)
Adenoma , Quistes , Neoplasias Hipofisarias , Humanos , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/cirugía , Antígeno Ki-67/análisis , Estudios Retrospectivos , Carga Tumoral , Adenoma/diagnóstico por imagen , Adenoma/cirugía , Proliferación Celular
13.
Stem Cells Int ; 2024: 5579228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550755

RESUMEN

The immunoregulatory role of mesenchymal stem cells (MSCs) in inflammation is heterogeneous and can exhibit anti-inflammatory or proinflammatory properties depending on the microenvironment. We herein observed that the activation of Toll-like receptor 3 (TLR3) by polyinosinic : polycytidylic acid (poly(I : C)) stimulation facilitated the transformation of adipose-derived stem cells (ADSCs) into an anti-inflammatory phenotype. The enhanced anti-inflammatory properties were assessed in a taurocholate-induced pancreatitis model. The results demonstrated that poly(I : C) pretreated ADSCs exhibited enhanced anti-inflammatory properties than untreated ADSCs in taurocholate-induced pancreatitis. Mechanistically, poly(I : C)-treated ADSCs showed increased production and secretion of interleukin-10 (IL-10), which demonstrates a potent ability to alleviate inflammatory signaling cascades in acinar cells. Simultaneously, the heightened anti-inflammatory effects of poly(I : C)-treated ADSCs in pancreatitis were associated with the regulation of macrophage classical/alternative transformation, thereby mitigating inflammatory factor-mediated damage to the pancreatic acinar cell. We propose that TLR3 activation by poly(I : C) is an effective strategy to enhance the anti-inflammatory properties of MSCs, which offers a valuable consideration for improving the therapeutic efficacy of MSCs in inflammatory diseases.

14.
Brain Res ; 1832: 148843, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430996

RESUMEN

BACKGROUND: Chronic pain is linked to cognitive impairment; however, the underlying mechanisms remain unclear. In the present study, we examined these mechanisms in a well-established mouse model of Alzheimer's disease (AD). METHODS: Neuropathic pain was modeled in 5-month-old transgenic APPswe/PS1dE9 (APP/PS1) mice by partial ligation of the sciatic nerve on the left side, and chronic inflammatory pain was modeled in another group of APP/PS1 mice by injecting them with complete Freund's adjuvant on the plantar surface of the left hind paw. Six weeks after molding, the animals were tested to assess pain threshold (von Frey filament), learning, memory (novel object recognition, Morris water maze, Y-maze, and passive avoidance), and depression-like symptoms (sucrose preference, tail suspension, and forced swimming). After behavioral testing, mice were sacrificed and the levels of p65, amyloid-ß (residues 1-42) and phospho-tau in the hippocampus and cerebral cortex were assayed using western blotting, while interleukin (IL)-1ß levels were measured by enzyme-linked immunosorbent assay. RESULTS: Animals subjected to either type of chronic pain showed lower pain thresholds, more severe deficits in learning and memory, and stronger depression-like symptoms than the corresponding control animals. Either type of chronic pain was associated with upregulation of p65, amyloid-ß (1-42), and IL-1ß in the hippocampus and cerebral cortex, as well as higher levels of phosphorylated tau. CONCLUSIONS: Chronic pain may exacerbate cognitive deficits and depression-like symptoms in APP/PS1 mice by worsening pathology related to amyloid-ß and tau and by upregulating signaling involving IL-1ß and p65.


Asunto(s)
Enfermedad de Alzheimer , Dolor Crónico , Animales , Ratones , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Modelos Animales de Enfermedad , Aprendizaje por Laberinto , Trastornos de la Memoria/etiología , Ratones Transgénicos , Presenilina-1/genética
15.
J Food Sci ; 89(5): 2814-2826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38551189

RESUMEN

Conventional methods for inhibiting browning in wine are not suitable for cili (Roxburgh rose) wine, which is naturally rich in ascorbic acid and subject to restrictions on SO2 addition. In this study, the capacity of various additives to suppress the browning of cili wine caused by ascorbic acid degradation was investigated. SO2, pure reduced glutathione (GSH), regular inactive dry yeast (IDY), and IDY with various levels of glutathione enrichment (g-IDY) were separately introduced into cili wine following the completion of alcoholic fermentation. Over a period of 12 months, the color parameters, levels of ascorbic acid, phenolic compounds, antioxidant activity, and GSH content of the aged cili wine were analyzed. Among the investigated additives, g-IDY exhibited the strongest inhibitory effect on browning. Moreover, adding 800 mg L-1 g-IDY increased the total reducing power and residual GSH content by factors of 1.52 and 2.44, respectively, with respect to those of the SO2-treated cili wine, thus enhancing its antioxidant capacity. Using ultra-performance liquid chromatography-tandem mass spectrometry analysis, a total of 22 monomeric phenolic compounds were identified. After g-IDY treatment, the contents of 15 easily oxidizable o-diphenols decreased, preventing the depletion of ascorbic acid as an antioxidant. As a result, the levels of ascorbic acid and total phenolics were 1.5-fold and 1.17-fold higher than those in the SO2-treated wine, respectively. This study demonstrates that g-IDY provides a new approach to preventing the browning of wine caused by ascorbic acid degradation. PRACTICAL APPLICATION: Cili wine, characterized by its high ascorbic acid content, can decelerate cellular senescence and bolster immune function, which has contributed to its popularity. Ascorbic acid, a potent antioxidant, can be spiked into white wines to significantly enhance their antioxidative properties. Nevertheless, the high ascorbic acid content in cili wine renders it susceptible to oxidation under both aerobic and anaerobic conditions, which alters the wine's hue from golden to dark brown, thus diminishing its commercial value. Overcoming this browning associated with ascorbic acid degradation is therefore of considerable importance and could facilitate the advancement of the cili industry.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Color , Fermentación , Glutatión , Fenoles , Dióxido de Azufre , Vino , Vino/análisis , Ácido Ascórbico/análisis , Ácido Ascórbico/farmacología , Antioxidantes/análisis , Antioxidantes/farmacología , Fenoles/análisis , Glutatión/metabolismo , Dióxido de Azufre/análisis , Saccharomyces cerevisiae
16.
Sci Rep ; 14(1): 6191, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485964

RESUMEN

Observational studies have suggested that insulin resistance (IR) is associated with hypertension and various cardiovascular diseases. However, the presence of a causal relationship between IR and cardiovascular disease remains unclear. Here, we applied Mendelian randomization (MR) approaches to address the causal association between genetically determined IR and the risk of cardiovascular diseases. Our primary genetic instruments comprised 53 SNPs associated with IR phenotype from a GWAS of up to 188,577 participants. Genetic association estimates for hypertension and venous thromboembolism (VTE) were extracted from UK Biobank, estimates for atrial fibrillation (AF) were extracted from the hitherto largest GWAS meta-analysis on AF, estimates for heart failure were extracted from HERMES Consortium, estimates for peripheral artery disease (PAD) and aortic aneurysm were extracted from the FinnGen Study. The main analyses were performed using the random-effects inverse-variance weighted approach, and complemented by sensitivity analyses and multivariable MR analyses. Corresponding to 55% higher fasting insulin adjusted for body mass index, 0.46 mmol/L lower high-density lipoprotein cholesterol and 0.89 mmol/L higher triglyceride, one standard deviation change in genetically predicted IR was associated with increased risk of hypertension (odds ratio (OR) 1.06, 95% CI 1.04-1.08; P = 1.91 × 10-11) and PAD (OR 1.90, 95% CI 1.43-2.54; P = 1.19 × 10-5). Suggestive evidence was obtained for an association between IR and heart failure (OR per SD change in IR: 1.19, 95% CI 1.01-1.41, P = 0.041). There was no MR evidence for an association between genetically predicted IR and atrial fibrillation, VTE, and aortic aneurysm. Results were widely consistent across all sensitivity analyses. In multivariable MR, the association between IR and PAD was attenuated after adjustment for lipids (P = 0.347) or BMI (P = 0.163). Our findings support that genetically determined IR increases the risk of hypertension and PAD.


Asunto(s)
Aneurisma de la Aorta , Fibrilación Atrial , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Hiperinsulinismo , Hipertensión , Resistencia a la Insulina , Enfermedad Arterial Periférica , Tromboembolia Venosa , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Resistencia a la Insulina/genética , Fibrilación Atrial/genética , Análisis de la Aleatorización Mendeliana , Hipertensión/genética , Insuficiencia Cardíaca/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
17.
Clin Lab ; 70(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345966

RESUMEN

BACKGROUND: Based on research, c.609G>A (p.W203X) is a universal mutation site for MMACHC in methylmalonic acidemia (MMA) combined with homocystinuria, cblC type (cblC disease), and c.467G>A (p.G156D) mutation in families with such disease have not yet been reported. To conduct clinical and molecular genetic analysis of a family with cblC disease. METHODS: This work followed the Declaration of Helsinki. All testing methods were performed under the informed consent of our children patients' parents. A second-generation cblC family with 5 members, was selected as the research subject, including sick siblings and parents and an older sister with normal phenotype, given newborn screening for acylcarnitine spectrum via liquid chromatography tandem mass spectrometry (LC-MS/MS), and diagnosed through combining urine organic acid with homocysteine detection via gas chromatography-mass spectrometry (GC-MS) with second-generation gene sequencing technology. The peripheral blood of five family members was collected for genomic DNA extraction, and the changes were screened in disease-related MMACHC sequence via PCR and direct DNA sequencing. RESULTS: The family conformed to the autosomal recessive inheritance, the proband and younger sister were cblC patients, diagnosed in February and at 22d given relevant treatment. The proband died, whereas the younger sister received follow-up treatment. Their parents and sister had normal phenotype. In 2 cases, there was compound heterozygous mutation in MMACHC called c.609G>A (p.W203X) nonsense mutation and c.467G>A (p.G156D) missense mutation in exon 4, while the father with normal phenotype had heterozygous mutation c.609G>A in exon 4 coding area. In its protein, the 203rd amino acid changed from tryptophan to a stop codon (p.W203 x). The normal mother and sister had a heterozygous mutation c.467G>A in exon 4 coding area. In its protein, the 156th amino acid changed from glycine to aspartic acid (p.G156D). CONCLUSIONS: The cblC family results from c.609G>A (p.W203X) and c.467G>A (p.G156D) compound heterozygous mutations in MMACHC, which has a pathogenic impact.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Homocistinuria , Recién Nacido , Niño , Humanos , Homocistinuria/complicaciones , Homocistinuria/diagnóstico , Homocistinuria/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Mutación , Aminoácidos , Biología Molecular , Vitamina B 12 , Ácido Metilmalónico , Oxidorreductasas
18.
Microorganisms ; 12(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257979

RESUMEN

To better understand the antibiotic resistance, virulence genes, and some related drug-resistance genes of Vibrio parahaemolyticus in farmed pacific white shrimp (Litopenaeus vannamei) in Ningde regions, Fujian province, we collected and isolated a total of 102 strains of V. parahaemolyticus from farmed pacific white shrimp in three different areas of Ningde in 2022. The Kirby-Bauer disk method was used to detect V. parahaemolyticus resistance to 22 antibiotics, and resistant genes (such as quinolones (qnrVC136, qnrVC457, qnrA), tetracyclines (tet A, tetM, tetB), sulfonamides (sulI, sulII, sulIII), aminoglycosides (strA, strB), phenicols (cat, optrA, floR, cfr), ß-lactams (carB), and macrolides (erm)) were detected by using PCR. The findings in this study revealed that V. parahaemolyticus was most resistant to sulfamoxazole, rifampicin, and erythromycin, with resistance rates of 56.9%, 36.3%, and 33.3%, respectively. Flufenicol, chloramphenicol, and ofloxacin susceptibility rates were 97.1%, 94.1%, and 92.2%, respectively. In all, 46% of the bacteria tested positive for multi-drug resistance. The virulence gene test revealed that all bacteria lacked the tdh and trh genes. Furthermore, 91.84% and 52.04% of the isolates were largely mediated by cat and sulII, respectively, with less than 5% resistance to aminoglycosides and macrolides. There was a clear mismatch between the antimicrobial resistance phenotypes and genotypes, indicating the complexities of V. parahaemolyticus resistance.

19.
Sensors (Basel) ; 24(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257537

RESUMEN

In order to realize the economic dispatch and safety stability of offshore wind farms, and to address the problems of strong randomness and strong time correlation in offshore wind power forecasting, this paper proposes a combined model of principal component analysis (PCA), sparrow algorithm (SSA), variational modal decomposition (VMD), and bidirectional long- and short-term memory neural network (BiLSTM). Firstly, the multivariate time series data were screened using the principal component analysis algorithm (PCA) to reduce the data dimensionality. Secondly, the variable modal decomposition (VMD) optimized by the SSA algorithm was applied to adaptively decompose the wind power time series data into a collection of different frequency components to eliminate the noise signals in the original data; on this basis, the hyperparameters of the BiLSTM model were optimized by integrating SSA algorithm, and the final power prediction value was obtained. Ultimately, the verification was conducted through simulation experiments; the results show that the model proposed in this paper effectively improves the prediction accuracy and verifies the effectiveness of the prediction model.

20.
Small ; 20(26): e2310526, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221685

RESUMEN

Featured with the attractive properties such as large surface area, unique atomic layer thickness, excellent electronic conductivity, and superior catalytic activity, layered metal chalcogenides (LMCs) have received considerable research attention in electrocatalytic applications. In this review, the approaches developed to synthesize LMCs-based electrocatalysts are summarized. Recent progress in LMCs-based composites for electrochemical energy conversion applications including oxygen reduction reaction, carbon dioxide reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, and nitrogen reduction reaction is reviewed, and the potential opportunities and practical obstacles for the development of LMCs-based composites as high-performing active substances for electrocatalytic applications are also discussed. This review may provide an inspiring guidance for developing high-performance LMCs for electrochemical energy conversion applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...