Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 616: 177-188, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203031

RESUMEN

The binding properties of single noble metal atoms (Pd, Pt and Ir) anchored Janus MoSSe monolayers (MLs), the catalytic activity of Pd- and Pt-MoSSe in oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as well as the adsorption behaviors of Ir-MoSSe for harmful NO, CO and NH3 molecules are systematically studied from the first-principles calculations. Current results reflect the ascending order (Pd-MoSSe < Pt-MoSSe < Ir-MoSSe) of stability and binding strength as well as the tunable electronic properties of Janus MoSSe ML by anchoring single Pd, Pt and Ir atoms. Pd- and Pt-MoSSe exhibit excellent bifunctional catalytic performance, especially the former having lower overpotentials 0.43 and 0.50 V for ORR and OER, which are better than the well-known Pt (111) (0.45 V) and IrO2 (0.56 V) electrocatalysts, respectively. The adsorption nature for NO, CO and NH3 molecules changes from physisorption (on pristine MoSSe) to chemisorption (on Ir-MoSSe), especially for NO and CO molecules due to their ultra-low adsorption energies (-3.72 and -2.91 eV, respectively). Thus, Pd- and Pt-MoSSe (particularly the former) may act as promising highly-efficient ORR/OER bifunctional electrocatalysts, and Ir-MoSSe may serve as a potential sensitive harmful gas detector for NO and CO molecules.

2.
Phys Chem Chem Phys ; 23(18): 11004-11014, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33942039

RESUMEN

From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH3 and H2S) adsorbed on the Ni-MoSSe monolayer and CO catalytic oxidation on the Fe-MoSSe monolayer are systematically investigated. An increasing order (Fe-MoSSe < Co-MoSSe < Ni-MoSSe) is found for the stability and band gap of the TM atom adsorbed Janus MoSSe monolayer. These toxic gas molecules are found to be weakly physisorbed and strongly chemisorbed on the pristine and Ni-MoSSe monolayers, respectively. The electronic structure and gas molecular adsorption properties of the Janus MoSSe monolayer can be modulated by adsorbing different TM atoms and gas molecules. Particularly, the CO catalytic oxidation can be realized on the Fe-MoSSe monolayer in light of the more preferable Eley-Rideal (ER) mechanism with the two-step route (CO + O2 → OOCO → CO2 + Oads, CO + Oads → CO2) with highly exothermic processes in each step. The adsorption of TM atoms which may greatly enhance gas sensing performance and catalytic performance of CO oxidation based on the Janus MoSSe monolayer is further discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...