Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(11): 9051-9059, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38441317

RESUMEN

Tuning the polarity of charge carriers at a single-molecular level is essential for designing complementary logic circuits in the field of molecular electronics. Herein, the transport properties of N-heterocyclic carbene (NHC)-linked single-molecule junctions are investigated using the ab initio quantum transport approach. The results reveal that the hydrogen atoms in NHCs function as a switch for regulating the polarity of charge carriers. Dehydrogenation changes the chemical nature of NHC anchors, thereby rendering holes as the major charge carriers rather than electrons. Essentially, dehydrogenation changes the anchoring group from electron-rich to electron-deficient. The electrons transferred to molecules from the electrodes raise the molecular level closer to the Fermi level, thus resulting in charge carrier polarity conversion. This conversion is influenced by the position and number of hydrogen atoms in the NHC anchors. To efficiently and decisively alter charge carrier polarity via atomic manipulation, a methyl substitution approach is developed and verified. These results confirm that atomic manipulation is a significant method for modulating the polarity of charge carriers in NHC-based single-molecule devices.

2.
Phys Chem Chem Phys ; 26(1): 412-420, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38078489

RESUMEN

Recently, MXenes, an emerging family of two-dimensional (2D) materials, have attracted increasing interest for photocatalytic water splitting due to their various excellent physical and chemical properties, such as large specific surface area, good hydrophilicity, and remarkable light absorption ability. However, the photocatalysts of MXenes with symmetric structures are limited by rapid recombination of photo-generated carriers and the prerequisite of a large band gap no less than 1.23 eV. Differently, Janus MXenes with different surface functional groups facilitate the separation of photo-generated electrons and holes with the help of the intrinsic electric field. And, at the same time, there is no prerequisite for the band gap of Janus MXene photocatalysts as long as they possess appropriate band edge positions. Here, we explored the structural, electronic and photocatalytic water splitting properties of symmetric Y2CT2 and Janus Y2CTT' MXenes (T, T' = H, F, Cl, OH) using the density functional theory (DFT) method. Our calculations show that all the investigated Y2CT2 are not suitable photocatalysts for photocatalytic water splitting at all pH values (pH = 0, 7, and 14). In contrast, all the investigated Janus Y2CTT' MXenes are good water splitting photocatalysts with high optical absorption coefficients and remarkable solar-to-hydrogen (STH) efficiencies larger than 18% at pH = 14. Moreover, the STH efficiencies are larger than 18% even at all investigated pH values for Y2CHCl (18.5-22.6%), Y2 CFCl (∼18.7%), and Y2 C(OH)Cl (∼19.4%). Based on the first-principles calculations, we here for the first time propose an easy strategy to design Janus MXene photocatalyst candidates with possible high STH efficiency according to the electronic properties of their symmetric counterparts. Our study is helpful for the future design of Janus MXenes and more generally Janus 2D photocatalysts for water splitting with high STH efficiency.

3.
Materials (Basel) ; 16(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834743

RESUMEN

Fatigue life prediction of Inconel 718 fabricated by laser powder bed fusion was investigated using a miniature specimen tests method and machine learning algorithms. A small dataset-based machine learning framework integrating thirteen kinds of algorithms was constructed to predict the pore-influenced fatigue life. The method of selecting random seeds was employed to evaluate the performance of the algorithms, and then the ranking of various machine learning algorithms for predicting pore-influenced fatigue life on small datasets was obtained by verifying the prediction model twenty or thirty times. The results showed that among the thirteen popular machine learning algorithms investigated, the adaptive boosting algorithm from the boosting category exhibited the best fitting accuracy for fatigue life prediction of the additively manufactured Inconel 718 using the small dataset, followed by the decision tree algorithm in the nonlinear category. The investigation also found that DT, RF, GBDT, and XGBOOST algorithms could effectively predict the fatigue life of the additively manufactured Inconel 718 within the range of 1 × 105 cycles on a small dataset compared to others. These results not only demonstrate the capability of using small dataset-based machine learning techniques to predict fatigue life but also may guide the selection of algorithms that minimize performance evaluation costs when predicting fatigue life.

4.
Phys Chem Chem Phys ; 25(38): 26270-26277, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37743842

RESUMEN

We study the regulation of the electronic and spin transport properties of the WGe2N4 monolayer by adsorbing 4d transition metal atoms (Y-Cd) using density functional theory combined with non-equilibrium Green's function. It is found that the adsorption of transition metal atoms (except Pd, Ag and Cd atoms) can introduce a magnetic moment into the WGe2N4 monolayer. Among the transition metal atoms, the adsorption of Nb and Rh atoms transforms WGe2N4 from a semiconductor to a half-metal and a highly spin-polarized semiconductor, respectively. The half-metallic Nb-adsorbed WGe2N4 system is selected to investigate the spin transport properties, and a high magnetoresistance ratio of 107% is achieved. In both parallel and antiparallel magnetization configurations, the spin filtering efficiency reaches close to 100% in the whole bias range, and the antiparallel magnetization configuration exhibits a dual spin filtering effect with a rectification ratio of up to 104. Our study predicts that the adsorption of 4d transition metal heteroatoms is an effective method to regulate the electronic and magnetic properties of WGe2N4 towards high-performance spintronic devices.

5.
Phys Chem Chem Phys ; 25(19): 13673-13682, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37158005

RESUMEN

The understanding of the interfacial effect on charge transport is essential in single-molecule electronics. In this study, we elucidated the transport properties of molecular junctions comprising thiol-terminated oligosilane with three to eight Si atoms and two types of Ag/Au electrode materials employing different interfacial configurations. First-principles quantum transport calculations demonstrated that the interfacial configuration determines the relative magnitude of the current between the Ag and Au electrodes, wherein the Ag monoatomic contact configuration presented a larger current than did the Au double-atom configuration. Further, the mechanism of electron tunneling from the interfacial states through the central σ channel was revealed. In contrast to Au double-atom electrodes, Ag monoatomic electrodes exhibit a higher current due to the presence of Ag-S interfacial states closer to the Fermi level. Our findings show that the interfacial configuration is a plausible way to generate the relative magnitude of current of thiol-terminated oligosilane molecular junctions with Au/Ag electrodes and provide further insight into the interfacial effect on the transport properties.

6.
Phys Chem Chem Phys ; 25(16): 11545-11554, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37039540

RESUMEN

Monolayer (ML) PtSe2 is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe2 field effect transistors (FETs). In this study, a series of 2D metals, transition metal dichalcogenides (NbSe2, TaS2), borophene, and MXenes (V2C(OH)2, V2CF2, Nb2C(OH)2, Nb2CF2, Nb2CO2, Hf2C(OH)2, Hf2CF2) were used as electrodes for FET fabrication. The interfacial electronic properties of electrodes and PtSe2 were studied in both the vertical and lateral directions using the ab initio method. In the vertical direction, PtSe2 formed ohmic contacts with most of the 2D metals except for Nb2CF2 and Hf2CF2. Specifically, in the cases of Nb2CF2 and Hf2CF2, p- and n-type Schottky contacts were formed with Schottky barrier heights (SBHs) of 0.48 eV and 0.02 eV, respectively. In the lateral direction, PtSe2 with contacting Hf2CF2 and V2C(OH)2 electrodes formed n-type Schottky contacts with SBHs of 0.14 eV and 0.09 eV, respectively. In the cases of TaS2 and Nb2CF2 electrodes, p-type Schottky contacts with SBHs of 0.35 eV and 0.29 eV, respectively, were formed. Moreover, n-type ohmic contacts were observed when Hf2C(OH)2 and Nb2C(OH)2 electrodes were applied, and p-type ohmic contacts were formed when borophene, NbSe2, Nb2CO2, and V2CF2 electrodes were used. This work reports a systematic investigation of ML PtSe2-2D metal interfaces and serves as a practical guide for selecting electrode materials for PtSe2 FETs.

7.
Phys Chem Chem Phys ; 25(4): 2926-2934, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36606421

RESUMEN

Carbon nanotubes (CNTs) are considered to be promising candidates for fabricating nanowires, due to their stable quasi-one-dimensional structure. Controlling the electronic transport properties is one of the most vital issues for molecular nanowires. Herein, using density functional theory combined with nonequilibrium Green's function method, we systematically investigate the current evolution of (4, 4) single-walled CNT based nanowires in squashing processes. When the CNTs are squashed by applying different pressure along the radial direction, a negative correlation can be found between the electrical conductance of the nanowire and the pressure. Besides, the response of the nano junction current to pressure is influenced by the squashing direction. Not only does the geometric structure show symmetry breaking in the specific squashing direction, which causes the CNT electrodes to change from conductors to semiconductors, but also obvious π stacking behavior can be witnessed in this squashing direction. More intriguingly, because the current of the nano junction can be completely cut off by squashing the CNTs, a significant switching behavior with the on/off ratio of up to 103 is obtained at low bias voltages. The underlying mechanisms for these phenomena are revealed by the analysis of the band structures, transmission spectra, frontier molecular orbitals and transmission pathways. These electronic transport properties make CNT a promising candidate for realizing conductance controllable nano devices.

8.
Zhonghua Nan Ke Xue ; 29(6): 505-510, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38602722

RESUMEN

OBJECTIVE: Exploring the libido status of male chronic headache patients and analyzing its relationship with headache symptoms, sleep, anxiety, and depression, providing reference for the comprehensive treatment of male chronic headache. METHODS: 179 patients with chronic headache who visited the Third Affiliated Hospital of Qiqihar Medical College from January 2022 to February 2023 were selected. The male Self Rated Libido Scale , Visual Analog Scale for Pain, Migraine Disability Assessment Scale, Pittsburgh Sleep Quality Index, Generalized Anxiety Disorder Scale-7, and Patient Health Questionnaire-9 were used to evaluate the libido status, headache severity, disability level, sleep quality, anxiety, and depression of the research subjects, respectively. RESULTS: Among 179 male chronic headache patients, 97 were chronic migraine (CM) patients and 82 were chronic tension type (CTT) patients, and 47 were screened for low libido. The influencing factors of libido in male chronic headache patients include age, smoking, frequency of exercise, course of disease, severity of pain, frequency of headache, disability score, sleep quality, anxiety and depression (all P<0.05). Compared with male CTT patients, male CM patients have higher pain severity, headache frequency, disability score, and anxiety score, while lower libido score (all P<0.05). The results of multivariate analysis showed that age, frequency of exercise, course of disease, severity of pain, frequency of headache, degree of disability, sleep quality, anxiety, and depression were the influencing factors for the decline of libido in male chronic headache patients. CONCLUSION: It is common for male chronic headache patients to experience decreased libido, with male chronic migraine (CM) patients exhibiting more severe reductions. Advanced age, decreased physical activity, longer disease duration, severe pain intensity, frequent headaches, higher disability levels, poor sleep, anxiety, and depression are risk factors for decreased libido in male chronic headache patients.


Asunto(s)
Trastornos de Cefalalgia , Trastornos Migrañosos , Humanos , Masculino , Estudios Transversales , Libido , Trastornos de Cefalalgia/epidemiología , Factores de Riesgo , Cefalea , Dolor
9.
Front Oncol ; 13: 1297775, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38273855

RESUMEN

P2X7 receptor (P2X7) is a non-selective and ATP-sensitive ligand-gated cation channel. Studies have confirmed that it is expressed in a variety of cells and correlates with their function, frequently in immune cells and tumor cells. We found increased expression of this receptor in many tumor cells, and it has a role in tumor survival and progression. In immune cells, upregulation of the receptor has a double effect on tumor suppression as well as tumor promotion. This review describes the structure of P2X7 and its role in the tumor microenvironment and presents possible mechanisms of P2X7 in tumor invasion and metastasis. Understanding the potential of P2X7 for tumor treatment, we also present several therapeutic agents targeting P2X7 and their mechanisms of action. In conclusion, the study of P2X7 is an important guideline for the use of clinical tumor therapy and may be able to provide a new idea for tumor treatment, but considering the complexity of the biological effects of P2X7, the drugs should be used with caution in clinical practice.

10.
Phys Chem Chem Phys ; 24(47): 29057-29063, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36437710

RESUMEN

Diodes have been widely studied as one of the most commonly used electronic components in circuits, and it is important to find diodes with an excellent rectification performance. Herein, we investigate the electronic and transport properties of Schottky contact diodes based on zigzag hydrogenated blue phosphorene nanoribbons, by employing density functional theory combined with the non-equilibrium Green's function. It is found that the adsorption of transition metal atoms Sc/Cr/Ti and Ni on the top site of blue phosphorene nanoribbons leads to metallic and semiconducting properties, respectively. Devices consisting of the planar contact of the metallic and semiconducting nanoribbons show rectifying behavior due to the Schottky barriers of the homojunctions. The current is preferential to flow from the semiconducting side to the metallic side. The rectification ratio of the Sc-Ni device and the Cr-Ni device can reach up to 108, which is much higher than that of traditional p-n junctions of about 105-107. The high rectification ratio at low bias regions, together with the low threshold voltages and negligible reverse currents, make blue phosphorene nanoribbon homojunctions ideal rectifier diodes.

11.
Materials (Basel) ; 15(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36363096

RESUMEN

The evolution of a local strain of the Ti-6Al-4V alloy subjected to tensile loading was investigated in situ by using the digital image correlation technique. The results show that some local strain concentration areas have already appeared in the elastic deformation stage, which then connected and became concentrated in the gauge region when the specimen yielded. The strain compatibility of grains in the macroscopic region is kept constant. The deformation process is further divided into six parts based on the development of the maximum strain gradient, and the strain compatibility of each stage of the alloy is summarized and analyzed. The quasi-in situ experiment reveals that the primary α(αp) grains undertake the main deformation at the micro-scale.

12.
Front Pharmacol ; 13: 951613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071852

RESUMEN

To avoid adverse drug reactions associated with injection, off-label nebulization of Tanreqing (TRQ) injection is often used in China to treat respiratory diseases. However, the aerodynamic properties and lung availability of TRQ aerosols remain largely uninvestigated. This study aimed to investigate the size distribution of TRQ aerosols and to compare the pharmacokinetics and tissue distribution of two compounds from TRQ (baicalin and oroxyloside) after transnasal aerosol inhalation and intravenous administration. Furthermore, this study aimed to evaluate the efficacy of TRQ against lipopolysaccharide-induced lung inflammation. The Dv(50) and transmission of TRQ aerosols were 2.512 µm and 74.867%, respectively. The Cmax of baicalin and oroxyloside in rat plasma after inhalation was lower than that after intravenous injection. After inhalation, the area under the curve (AUC) of baicalin and oroxyloside in tissues (lung, bronchoalveolar lavage fluid, and trachea) was 7.9-115.3 and 9.5-16.0 times that observed after intravenous administration, respectively. Baicalin and oroxyloside maintained high concentrations 4 h after inhalation, but only 1 h after intravenous injection. The mean lung-to-plasma concentration ratios of baicalin and oroxyloside were 287.6 and 49.9 times higher than with intravenous administration. Inhaled TRQ achieved the same effect against lipopolysaccharide-induced lung inflammation in mice at doses of only 1/16-1/8 of those administered intravenously. The results indicate that TRQ inhalation is a promising alternative to intravenous injections for the treatment of respiratory infection.

13.
J Ethnopharmacol ; 294: 115394, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35595219

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Meyer (ginseng) is a widely used traditional Chinese medicine that has played a beneficial role in the treatment of various diseases, including liver diseases. Ginsenoside Rg1 is a saponin isolated and purified from ginseng that exerts protective effects on the liver in some liver injury models. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous dioxin found mostly in food products that causes liver injury and other human diseases. Although significant efforts have been made to reduce the burden of liver disease, there is still a lack of effective treatment methods. AIM OF THE STUDY: Although ginsenoside Rg1 was reported to inhibit TCDD-mediated cytochrome P450 1A1 (CYP1A1) induction in HepG2 cells, we sought to verify its hepatoprotective effects and elucidate its mechanism in a TCDD-induced liver injury model in mice. MATERIAL AND METHODS: The mouse liver injury model was established by intraperitoneal TCDD injection, followed by treatment with various doses of ginsenoside Rg1 (50, 100, and 200 mg/kg). Clinical indicators of liver injury, such as an increase in serum aspartate aminotransferase and alanine aminotransferase levels, as well as histopathological changes were evaluated. RESULTS: The common clinical indicators of liver injury were detected following TCDD injection, including an increase in serum alanine aminotransferase and aspartate aminotransferase levels, increased relative liver weight, and histopathological changes. Following treatment with ginsenoside Rg1, the levels of aspartate aminotransferase and alanine aminotransferase decreased significantly, and the liver histology was improved. In addition, ginsenoside Rg1 competitively inhibited TCDD-induced Cyp1a1 mRNA transcription through the modulation of aryl hydrocarbon receptor (AhR) nuclear translocation. CONCLUSION: Ginsenoside Rg1 is a potent partial AhR agonist that has potential as an effective medication for protecting against TCDD-associated liver injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Panax , Dibenzodioxinas Policloradas , Alanina Transaminasa , Animales , Aspartato Aminotransferasas , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Citocromo P-450 CYP1A1/genética , Ginsenósidos , Hígado , Ratones , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética
14.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1618-1624, 2022 Mar.
Artículo en Chino | MEDLINE | ID: mdl-35347961

RESUMEN

Aconiti Kusnezoffii Radix Cocta is one of the most commonly used medicinal materials in Mongolian medicine. Due to the strong toxicity of Aconiti Kusnezoffii Radix Cocta, Mongolian medicine often uses Chebulae Fructus, Glycyrrhizae Radix et Rhizoma to reduce the toxicity, so as to ensure the curative effect of Aconiti Kusnezoffii Radix Cocta while ensuring its clinical curative effect, but the mechanism is not clear. The aim of this study was to investigate the effects of Chebulae Fructus, Glycyrrhizae Radix et Rhizoma and Aconiti Kusnezoffii Radix Cocta on the mRNA transcription and protein translation of cytochrome P450(CYP450) in the liver of normal rats. Male SD rats were randomly divided into negative control(NC) group, phenobarbital(PB) group(0.08 g·kg~(-1)·d~(-1)), Chebulae Fructus group(0.254 2 g·kg~(-1)·d~(-1)), Glycyrrhizae Radix et Rhizoma group(0.254 2 g·kg~(-1)·d~(-1)), Aconiti Kusnezoffii Radix Cocta group(0.254 2 g·kg~(-1)·d~(-1))and compatibility group(0.254 2 g·kg~(-1)·d~(-1),taking Aconiti Kusnezoffii Radix Cocta as the standard). After continuous administration for 8 days, the activities of total bile acid(TBA), alkaline phosphatase(ALP), amino-transferase(ALT) and aspartate aminotransferase(AST)in serum were detected, the pathological changes of liver tissue were observed, and the mRNA and protein expression levels of CYP1 A2, CYP2 C11 and CYP3 A1 were observed. Compared with the NC group, the serum ALP, ALT and AST activities in the Aconiti Kusnezoffii Radix Cocta group were significantly increased, and the ALP, ALT and AST activities were decreased after compatibility. At the same time, compatibility could reduce the liver injury caused by Aconiti Kusnezoffii Radix Cocta. The results showed that Aconiti Kusnezoffii Radix Cocta could inhibit the expression of CYP1 A2, CYP2 C11 and CYP3 A1, and could up-regulate the expression of CYP1 A2, CYP2 C11 and CYP3 A1 when combined with Chebulae Fructus and Glycyrrhizae Radix et Rhizoma. The level of translation was consistent with that of transcription. The compatibility of Chebulae Fructus and Glycyrrhizae Radix et Rhizoma with Aconiti Kusnezoffii Radix Cocta could up-regulate the expression of CYP450 enzyme, reduce the accumulation time of aconitine in vivo, and play a role in reducing toxicity, and this effect may start from gene transcription.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hígado , Animales , Sistema Enzimático del Citocromo P-450/genética , Medicamentos Herbarios Chinos , Glycyrrhiza , Masculino , Extractos Vegetales , Ratas , Ratas Sprague-Dawley , Terminalia
15.
ACS Appl Mater Interfaces ; 14(7): 9281-9291, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35148053

RESUMEN

Electrochemical actuators play a key role in converting electrical energy to mechanical energy. However, a low actuation stress and an unsatisfied strain response rate strongly limit the extensive applications of the actuators. Here, we report hybrid manganese dioxide (MnO2) fabricated by introducing ramsdellite (R-MnO2) and Mn vacancies into birnessite (δ-MnO2) nanosheets, which in situ grew on the surface of a nickel (Ni) film, forming a hybrid MnO2/Ni actuator. The actuator demonstrated a rapid strain response of 0.88% s-1 (5.3% intrinsic strain in 6 s) and a large actuation stress of 244 MPa owing to the special R-MnO2 with a high density of sodium ion (Na+)-accessible lattice tunnels, Mn vacancies, and also a high Young's modulus of the hybrid MnO2/Ni composite. Besides, the cyclic stability of the actuator was realized after 1.2 × 104 cycles of electric stimulation under a frequency of 0.05 Hz. The finding of the novel hybrid MnO2/Ni actuator may provide a new strategy to maximize the actuating performance evidently through tailoring the lattice tunnel structure and introducing cation vacancies into electrochemical electrode materials.

16.
Phys Chem Chem Phys ; 24(3): 1849-1859, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34988568

RESUMEN

The spin-resolved transport properties of molecular logic devices composed of two Mn porphyrin molecules connected to each other via a six-carbon atomic chain were studied using the non-equilibrium Green's function combined with density functional theory. The molecules were symmetrically connected to armchair graphene nanoribbon electrodes through four-carbon atomic chains on the left- and right-hand sides. Our calculations revealed that the spin-resolved current-voltage curves depend on the initial spin setting of the transition metal Mn atoms and carbon atoms on the zigzag edges where the electrodes come in contact with the molecule. By simultaneously regulating the spin orientations of the intermediate functional molecules and the zigzag edges of the armchair graphene nanoribbon electrodes, seven spin polarization configurations were obtained. These configurations were examined in this study considering the spin-related symmetry of molecular junctions. By meticulously selecting different combinations according to the specific input and output signals, YES, NOT, OR, NOR, and XOR multifarious spin logic devices were created. The findings of this study are expected to contribute toward the extension of molecular junction functions in future spintronic integrated circuit design and further miniaturization.

17.
Adv Sci (Weinh) ; 9(7): e2104935, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35023300

RESUMEN

Surgeons face challenges in intraoperatively defining margin of brain tumors due to its infiltrative nature. Extracellular acidosis caused by metabolic reprogramming of cancer cells is a reliable marker for tumor infiltrative regions. Although the acidic margin-guided surgery shows promise in improving surgical prognosis, its clinical transition is delayed by having the exogenous probes approved by the drug supervision authority. Here, an intelligent surface-enhanced Raman scattering (SERS) navigation system delineating glioma acidic margins without administration of exogenous probes is reported. With assistance of this system, the metabolites at the tumor cutting edges can be nondestructively transferred within a water droplet to a SERS chip with pH sensitivity. Homemade deep learning model automatically processes the Raman spectra collected from the SERS chip and delineates the pH map of tumor resection bed with increased speed. Acidity correlated cancer cell density and proliferation level are demonstrated in tumor cutting edges of animal models and excised tissues from glioma patients. The overall survival of animal models post the SERS system guided surgery is significantly increased in comparison to the conventional strategy used in clinical practice. This SERS system holds the promise in accelerating clinical transition of acidic margin-guided surgery for solid tumors with infiltrative nature.


Asunto(s)
Acidosis , Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/cirugía , Glioma/patología , Glioma/cirugía , Humanos , Márgenes de Escisión , Espectrometría Raman
19.
Cell Discov ; 7(1): 103, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34719679

RESUMEN

Epidemiological studies have demonstrated that the genetic factors partly influence the development of same-sex sexual behavior, but most genetic studies have focused on people of primarily European ancestry, potentially missing important biological insights. Here, we performed a two-stage genome-wide association study (GWAS) with a total sample of 1478 homosexual males and 3313 heterosexual males in Han Chinese populations and identified two genetic loci (rs17320865, Xq27.3, FMR1NB, Pmeta = 8.36 × 10-8, OR = 1.29; rs7259428, 19q12, ZNF536, Pmeta = 7.58 × 10-8, OR = 0.75) showing consistent association with male sexual orientation. A fixed-effect meta-analysis including individuals of Han Chinese (n = 4791) and European ancestries (n = 408,995) revealed 3 genome-wide significant loci of same-sex sexual behavior (rs9677294, 2p22.1, SLC8A1, Pmeta = 1.95 × 10-8; rs2414487, 15q21.3, LOC145783, Pmeta = 4.53 × 10-9; rs2106525, 7q31.1, MDFIC, Pmeta = 6.24 × 10-9). These findings may provide new insights into the genetic basis of male sexual orientation from a wider population scope. Furthermore, we defined the average ZNF536-immunoreactivity (ZNF536-ir) concentration in the suprachiasmatic nucleus (SCN) as lower in homosexual individuals than in heterosexual individuals (0.011 ± 0.001 vs 0.021 ± 0.004, P = 0.013) in a postmortem study. In addition, compared with heterosexuals, the percentage of ZNF536 stained area in the SCN was also smaller in the homosexuals (0.075 ± 0.040 vs 0.137 ± 0.103, P = 0.043). More homosexual preference was observed in FMR1NB-knockout mice and we also found significant differences in the expression of serotonin, dopamine, and inflammation pathways that were reported to be related to sexual orientation when comparing CRISPR-mediated FMR1NB knockout mice to matched wild-type target C57 male mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA