Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Front Med (Lausanne) ; 11: 1379078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38813387

RESUMEN

Objective: Prior research underscores the significance of paraspinal muscles in maintaining spinal stability. This study aims to investigate the predictive value of paraspinal muscle parameters for the occurrence of new vertebral compression fractures (NVCF) following percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP) in patients with osteoporotic vertebral compression fractures (OVCF). Methods: Retrospectively collected data from October 2019 to February 2021 (internal validation, n = 235) and March 2021 to November 2021 (external validation, n = 105) for patients with OVCF treated with PVP/PKP at our institution. They were randomly divided into training (188 cases) and validation groups (47 cases) at an 8:2 ratio. Lasso regression and multivariable logistic regression identified independent risk factors in the training set, and a Nomogram model was developed. Accuracy was assessed using receiver operating characteristic curves (ROC), calibration was evaluated with calibration curves and the Hosmer-Lemeshow test, and clinical utility was analyzed using decision curve analysis (DCA) and clinical impact curve (CIC). Results: Surgical approach, spinal computed tomography (CT) values, and multifidus skeletal muscle index (SMI) are independent predictors of postoperative NVCF in OVCF patients. A Nomogram model, based on the identified predictors, was developed and uploaded online. Internal validation results showed area under the curve (AUC) values of 0.801, 0.664, and 0.832 for the training set, validation set, and external validation, respectively. Hosmer-Lemeshow goodness-of-fit tests (χ2 = 7.311-14.474, p = 0.070-0.504) and calibration curves indicated good consistency between observed and predicted values. DCA and CIC demonstrated clinical net benefit within risk thresholds of 0.06-0.84, 0.12-0.23, and 0.01-0.27. At specificity 1.00-0.80, the partial AUC (0.106) exceeded that at sensitivity 1.00-0.80 (0.062). Conclusion: Compared to the spinal CT value, the multifidus SMI has certain potential in predicting the occurrence of NVCF. Additionally, the Nomogram model of this study has a greater negative predictive value.

2.
Ultrasonics ; 141: 107354, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795521

RESUMEN

Some topographies in plate structures can hide cracks and make it difficult to monitor damage growth. This is because topographical features convert homogeneous structures to heterogeneous one and complicate the wave propagation through such structures. At certain points destructive interference between incident, reflected and transmitted elastic waves can make those points insensitive to the damage growth when adopting acoustics based structural health monitoring (SHM) techniques. A newly developed nonlinear ultrasonic (NLU) technique called sideband peak count - index (or SPC-I) has shown its effectiveness and superiority compared to other techniques for nondestructive testing (NDT) and SHM applications and is adopted in this work for monitoring damage growth in plate structures with topographical features. The performance of SPC-I technique in heterogeneous specimens having different topographies is investigated using nonlocal peridynamics based peri-ultrasound modeling. Three types of topographies - "X" topography, "Y" topography and "XY" topography are investigated. It is observed that "X" and "XY" topographies can help to hide the crack growth, thus making cracks undetectable when the SPC-I based monitoring technique is adopted. In addition to the SPC-I technique, we also investigate the effectiveness of an emerging sensing technique based on topological acoustic sensing. This method monitors the changes in the geometric phase; a measure of the changes in the acoustic wave's spatial behavior. The computed results show that changes in the geometric phase can be exploited to monitor the damage growth in plate structures for all three topographies considered here. The significant changes in geometric phase can be related to the crack growth even when these cracks remain hidden for some topographies during the SPC-I based single point inspection. Sensitivities of both the SPC-I and the topological acoustic sensing techniques are also investigated for sensing the topographical changes in the plate structures.

3.
Antioxidants (Basel) ; 13(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38790682

RESUMEN

Brucella virulence relies on its successful intracellular life cycle. Modulating host cell death is a strategy for Brucella to survive and replicate intracellularly. Ferroptosis is a novel regulated cell death characterized by iron-triggered excessive lipid peroxidation, which has been proven to be associated with pathogenic bacteria infection. Thus, we attempted to explore if smooth-type Brucella infection triggers host cell ferroptosis and what role it plays in Brucella infection. We assessed the effects of Brucella infection on the lactate dehydrogenase release and lipid peroxidation levels of RAW264.7 macrophages; subsequently, we determined the effect of Brucella infection on the expressions of ferroptosis defense pathways. Furthermore, we determined the role of host cell ferroptosis in the intracellular replication and egress of Brucella. The results demonstrated that Brucella M5 could induce ferroptosis of macrophages by inhibiting the GPX4-GSH axis at the late stage of infection but mitigated ferroptosis by up-regulating the GCH1-BH4 axis at the early infection stage. Moreover, elevating host cell ferroptosis decreased Brucella intracellular survival and suppressing host cell ferroptosis increased Brucella intracellular replication and egress. Collectively, Brucella may manipulate host cell ferroptosis to facilitate its intracellular replication and egress, extending our knowledge about the underlying mechanism of how Brucella completes its intracellular life cycle.

4.
Ultrasonics ; 138: 107259, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335920

RESUMEN

A newly developed nonlinear ultrasonic (NLU) technique called sideband band peak count-index (or SPC-I) measures the degree of nonlinearity in materials by counting the sideband peaks above a moving threshold line - larger the SPC-I values, higher is the material nonlinearity. In various published papers, the SPC-I technique has shown its effectiveness in structural health monitoring (SHM) applications. However, the effects of different types of nonlinear phenomenon on the sideband peak generation is yet to be investigated in depth. This work addresses this knowledge gap and investigates the effects of different types of nonlinearity on the SPC-I technique. Three types of nonlinearity (material nonlinearity, structural nonlinearity and contact nonlinearity) are investigated separately through numerical modeling. In this investigation the material nonlinearity and the contact nonlinearity are modeled by finite element method (FEM) using the commercial Abaqus/CAE software. The structural nonlinearity arising from stationary cracks is modeled using nonlocal peridynamics based peri-ultrasound modeling technique. Numerical modeling shows that the sideband peak values do not increase proportional to the input signal strength thus indicating nonlinear response, and different types of nonlinearities affect the SPC-I measurements differently. For the experimental verification a composite plate with impact-induced damage is considered for investigating the material nonlinearity and structural nonlinearity while a linear elastic aluminum plate is used to examine the contact nonlinearity between the transducers and the plate. The trends observed in the experimental observations matched with the numerical model predictions.

5.
Microbes Infect ; : 105276, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38072184

RESUMEN

EF-hand proteins not only regulate biological processes, but also influence immunity and infection. In this review, we summarize EF-hand proteins' functions in host and zoonotic pathogens, with details in structures, Ca2+ affinity, downstream targets and functional mechanisms. Studies entitled as EF-hand-related but with less solid features were also discussed. We believe it could raise cautions and facilitate proper research strategy for researchers.

6.
Pathogens ; 12(10)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37887705

RESUMEN

Brucella is an intracellular parasitic bacterium that uses multiple strategies to evade the host's defense mechanisms. However, how Brucella manipulates the host-induced oxidative stress and relevant biological processes are still poorly understood. In this study, a comparative transcriptome assay of macrophages infected with Brucella abortus S2308 and its rough mutant RB14 was performed to investigate the differentially expressed genes which might be associated with the pathogenic mechanism of Brucella. Our results showed that numerous host pro-oxidative and antioxidative stress genes were differentially expressed in macrophages infected with B. abortus S2308 and mutant RB14 at 4, 8, 24, and 48 h post-infection. Interestingly, we found that several ferroptosis-associated genes were differentially expressed during B. abortus RB14 infection. Moreover, we found that the rough mutant RB14-induced macrophage death was associated with reduced levels of host glutathione and glutathione peroxidase 4, together with increased free iron, lipid peroxidation, and ROS, all of which are important hallmarks of ferroptosis. The ferroptosis occurring during infection with RB14 was reduced by treatment with the inhibitor ferrostatin-1. However, B. abortus S2308 infection did not induce these hallmarks of ferroptosis. Taken together, our results demonstrate that ferroptosis is involved in rough B. abortus infection. Investigating how Brucella manipulates oxidative stress and ferroptosis in its host will be helpful to clarify the pathogenicity of B. abortus.

7.
Heliyon ; 9(9): e19693, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809488

RESUMEN

With the rapid development of consumer electronics industry, the demand for 3D curved screen in industry is also growing. At present, 3D curved screen is mass produced through glass molding process. However, due to the complex rheological properties of glass melt and the intricate deformation mechanism of glass molding process, the final geometry of the screen is difficult to predict. In this paper, the glass molding process for 3D curved screen is analyzed by finite element transient analysis. The trend of screen shape change is obtained and the final geometry of the screen is predicted. The results show that geometric fillet and rheological parameters have great influence on the flow of glass melt in glass molding process. This study is helpful for the selection of parameters of glass molding process and the design of 3D curved screen.

8.
Microbiol Spectr ; : e0207423, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37671873

RESUMEN

Brucella is a facultative intracellular pathogen that preferentially colonizes reproductive organs and utilizes erythritol as a preferred carbon source for its survival and proliferation. In this study, we identified a virulence-related DeoR-family transcriptional regulator (VdtR) and an erythronate metabolic pathway responsible for four-carbon acid sugar metabolism of D-erythronate and L-threonate in Brucella. We found that VdtR plays an important role in Brucella intracellular survival and trafficking to the endoplasmic reticulum in RAW 264.7 macrophages and in virulence in a mouse model. More importantly, we found that VdtR negatively regulates the erythronate metabolic pathway to promote extracellular proliferation of Brucella, depending on utilization of D-erythronate, an oxidative product of erythritol in the host. In a pregnant mouse model, the erythronate metabolic pathway was shown to cooperate with erythritol metabolism and play a crucial role in Brucella proliferation in the placenta, inducing placentitis and finally resulting in abortion or stillbirth. Our results demonstrate that, in addition to erythritol, erythronate is a preferred carbon source for Brucella utilization to promote its extracellular proliferation. This discovery updates the information on the preferential colonization of reproductive organs by Brucella and provides a novel insight into the Brucella-associated induction of abortion in pregnant animals. IMPORTANCE Brucella is an intracellular parasitic bacterium causing zoonosis, which is distributed worldwide and mainly characterized by reproductive disorders. Erythritol is found in allantoic fluid, chorion, and placenta of aborted animals, preferentially utilized by Brucella to cause infertility and abortion. However, the erythritol metabolism-defected mutant was unable to function as a vaccine strain due to its residual virulence. Here, we found that erythronate, an oxidative product of erythritol in the host, was also preferentially utilized by Brucella relying on the function of a deoxyribonucleoside regulator-family transcriptional regulator VdtR. Erythronate utilization activates VdtR regulation of the erythronate metabolic pathway to promote Brucella extracellular proliferation, inducing placentitis/abortion in mice. Double mutations on Brucella erythritol and D-erythronate metabolisms significantly reduced bacterial virulence. This study revealed a novel mechanism of Brucella infection-induced abortion, thus providing a new clue for the study of safer Brucella attenuated vaccines.

9.
Polymers (Basel) ; 15(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37571203

RESUMEN

The main challenge in a polymer coextrusion process is to have a good die design prior to the process, which can minimize the geometric errors that are caused by extrusion swell and interface motion. For this purpose, a coupling method of optimization and inverse design for a coextrusion die was studied for a medical striped catheter. In the study, the main material was thermoplastic polyurethane (TPU), and the auxiliary material was TPU filled with 30 wt% barium sulfate. An overall optimization design method was used to optimize the geometry of the extrusion die channel for the striped catheter, which had a complex geometry. In the global optimization process, the local inverse design method was used to design the inlet of the auxiliary material. The non-linear programming by quadratic Lagrangian (NLPQL) algorithm was used to obtain the optimal geometric solution of the coextrusion die runner. The experimental verification results showed that the coupling method for coextrusion die design improved the design efficiency of the coextrusion die remarkably. The value of the objective function, which was used to measure the geometric error of the product, was reduced by 72.3% compared with the initial die design.

10.
Ultrasonics ; 133: 107028, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178484

RESUMEN

Since it is almost impossible to carry out a comprehensive parametric investigation experimentally for internal cracks with different geometry and orientation, a good numerical modeling and simulation technique is necessary to have a clear understanding of the physics of wave propagation and its interaction with cracks. Such investigation is helpful for structural health monitoring (SHM) with ultrasonic techniques. This work presents a nonlocal peri-ultrasound theory based on ordinary state-based (OSB) peridynamics for modeling elastic wave propagation in three-dimensional (3-D) plate structures containing multiple cracks. A relatively new and promising nonlinear ultrasonic technique called Sideband Peak Count - Index (or SPC-I) is adopted to extract the nonlinearity generated from the interactions between elastic waves and multiple cracks. Effects of three main parameters - the distance between the acoustic source and the crack, the crack spacing and the number of cracks are investigated using the proposed OSB peri-ultrasound theory together with the SPC-I technique. For each of these three parameters investigation, different crack thicknesses were considered - 0 mm (crack-free), 1 mm (thin crack), 2 mm (intermediate thickness) and 4 mm (thick crack); thin and thick cracks are defined after comparing the crack thickness value with the horizon size mentioned in the peri-ultrasound theory. It is found that for obtaining consistent results the acoustic source should be placed at least one wavelength away from the crack and crack spacings also play an important role on the nonlinear response. It is concluded that the nonlinear response diminishes when the cracks become too thick, and thin cracks show higher nonlinearity than that of thick cracks and no cracks. Finally, the proposed method which is combining the peri-ultrasound theory and SPC-I technique is used for monitoring cracks' evolution process. The numerical modeling results are compared with the experimental findings reported in the literature. Consistent qualitative trends in SPC-I variations predicted numerically and obtained experimentally are observed, thus it gives confidence in the proposed method.

11.
Health Psychol Behav Med ; 11(1): 2208213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139497

RESUMEN

Objective: Worldwide, there is a growing trend that college students are consuming more and more sugar-sweetened beverages (SSBs). In order to develop effective intervention strategies, it is important to explore what social-cognitive factors impact on college students' SSB consumption. Building on the temporal self-regulation theory (TST), the current study aimed to examine the effects of intention, behavioral prepotency, and self-regulatory capacity on SSB consumption among college students. Design: Data were collected from five hundred Chinese college students online. Participants self-reported their intention, behavioral prepotency (environmental cues and habits), self-regulatory capacity, and behaviors of SSB consumption. Results: Study findings showed that intention, behavioral prepotency, and self-regulatory capacity accounted for 32.9% of variance in SSB consumption. In terms of the direct effects, intention, behavioral prepotency, and self-regulatory capacity were significantly associated with the SSB consumption among college students. In addition, self-regulatory capacity and habits but not the environmental cues showed significant moderation effects on the intention-SSB consumption path, indicating that individual factors rather than environmental cues influenced the intention-behavior path of SSB consumption among college students. Conclusion: Findings of the current study demonstrated that the TST can be used to explain and understand the impacts of social-cognitive factors on college students' SSB consumption. Future research can apply TST to develop effective intervention programs targeting the reduction of SSB consumption among college students.

12.
Mol Biol Rep ; 50(5): 4435-4446, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37009956

RESUMEN

BACKGROUND: Scutellaria baicalensis Georgi is a famous traditional Chinese medicine, which is widely used in treating fever, upper respiratory tract infection and other diseases. Pharmacology study showed it can exhibit anti-bacterial, anti-inflammation and analgesic effects. In this study, we investigated the effect of baicalin on the odonto/osteogenic differentiation of inflammatory dental pulp stem cells (iDPSCs). METHODS AND RESULTS: iDPSCs were isolated from the inflamed pulps collected from pulpitis. The proliferation of iDPSCs was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazolium bromide (MTT) assay and flow cytometry. Alkaline phosphatase (ALP) activity assay, alizarin red staining, Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay were conducted to examine the differentiation potency along with the involvement of nuclear factor kappa B(NF-κB) and ß-catenin/Wnt signaling pathway. MTT assay and cell-cycle analysis demonstrated that baicalin had no influence on the proliferation of iDPSCs. ALP activity assay and alizarin red staining demonstrated that baicalin could obviously enhance ALP activity and calcified nodules formed in iDPSCs. RT-PCR and Western blot showed that the odonto/osteogenic markers were upregulated in baicalin-treated iDPSCs. Moreover, expression of cytoplastic phosphor-P65, nuclear P65, and ß-catenin in iDPSCs was significantly increased compared with DPSCs, but the expression in baicalin-treated iDPSCs was inhibited. In addition, 20 µM Baicalin could accelerate odonto/osteogenic differentiation of iDPSCs via inhibition of NF-κB and ß-catenin/Wnt signaling pathways. CONCLUSION: Baicalin can promote odonto/osteogenic differentiation of iDPSCs through inhibition of NF-κB and ß-catenin/Wnt pathways, thus providing direct evidence that baicalin may be effective in repairing pulp with early irreversible pulpitis.


Asunto(s)
FN-kappa B , Pulpitis , Humanos , FN-kappa B/metabolismo , Vía de Señalización Wnt , Osteogénesis , beta Catenina/metabolismo , Pulpa Dental , Células Madre/metabolismo , Diferenciación Celular , Células Cultivadas
13.
J Acoust Soc Am ; 152(5): 3035, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36456255

RESUMEN

This work presents a peri-ultrasound theory based on ordinary state-based peridynamics for modeling elastic waves propagating in three-dimensional (3-D) plate structures and interacting with multiple cracks. A recently developed nonlinear ultrasonic technique called sideband peak count-index (or SPC-I) is adopted for monitoring one or more cracks with thickness values equal to 0 mm (crack-free), 1, 2, and 4 mm. Three separate scenarios-one crack, two cracks, and four cracks in 3-D plate structures-are investigated. These cracks can be classified as thin and thick cracks depending on the horizon size, which is mentioned in peri-ultrasound theory. Computed results for all three cases show larger SPC-I values for thin cracks than for thick cracks and the case of no cracks. This observation is in line with the previously reported results in the literature and proves that the state-based peri-ultrasound theory can capture the expected nonlinear response of elastic waves interacting with multiple cracks without changing the cracks' surface locations artificially, and this is always needed in most of the other numerical methods. The proposed state-based peri-ultrasound theory is more flexible and reliable for solving 3-D problems, and the out-of-plane wave field can be obtained for engineering analysis.

14.
Front Pharmacol ; 13: 944886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36133815

RESUMEN

Empagliflozin (EMPA) therapy has led to improvements in patients with non-alcoholic fatty liver disease (NAFLD). Sestrin2 is a stress-inducible protein that controls the AMPK-mTOR pathway and inhibits oxidative damage in cells. This study investigated the functional implications of EMPA on the multifactorial pathogenesis of NAFLD and potential underlying molecular mechanisms of pathogenesis. An in vitro model of NAFLD was established by treating HepG2 cells with palmitic acid (PA); an in vivo model of NAFLD was generated by feeding C57BL/6 mice a high-fat diet. Investigations of morphology and lipid deposition in liver tissue were performed. Expression patterns of Sestrin2 and genes related to lipogenesis and inflammation were assessed by reverse transcription polymerase chain reaction. Protein levels of Sestrin2 and AMPK/mTOR pathway components were detected by Western blotting. NAFLD liver tissues and PA-stimulated HepG2 cells exhibited excessive lipid production and triglyceride secretion, along with upregulation of Sestrin2 and increased expression of lipogenesis-related genes. EMPA treatment reversed liver damage by upregulating Sestrin2 and activating the AMPK-mTOR pathway. Knockdown of Sestrin2 effectively increased lipogenesis and enhanced the mRNA expression levels of lipogenic and pro-inflammatory genes in PA-stimulated HepG2 cells; EMPA treatment did not affect these changes. Furthermore, Sestrin2 knockdown inhibited AMPK-mTOR signaling pathway activity. The upregulation of Sestrin2 after treatment with EMPA protects against lipid deposition-related metabolic disorders; it also inhibits lipogenesis and inflammation through activation of the AMPK-mTOR signaling pathway. These results suggest that Sestrin2 can be targeted by EMPA therapy to alleviate lipogenesis and inflammation in obesity-related NAFLD.

15.
Microb Pathog ; 166: 105536, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35439555

RESUMEN

Brucella species are infectious facultative intracellular pathogens. They have evolved multiple strategies to thwart immune responses and replicate in macrophages for chronic persistence in the host. As a Brucella effector, BtpB is transferred into target cells through the type IV secretion system. BtpB, a Toll/interleukin-1 receptor domain-containing protein, blocks host innate immune responses by interfering with Toll-like receptor signaling. However, the intracellular targets and their activated downstream pathways remain unclear. In this study, we constructed a strain of Brucella suis S2 with a deletion in the gene for BtpB, ΔbtpB, and the complemented strain, C-ΔbtpB with a restored copy of the btpB gene. The bacterial growth curves and stress resistance results showed that BtpB did not affect B. suis S2 growth. Infection of alveolar macrophages with WT and ΔbtpB strains showed that BtpB inhibited TLR2 and TLR4 expression and attenuated NLRP3 inflammasome activation. BtpB also attenuated secretion of the Brucella-induced proinflammatory cytokines, IL-1ß, IL-6, and TNF-α, in alveolar macrophages while up-regulating IL-10 expression. In general, the results confirmed that BtpB specifically inhibits TLR2/TLR4 and disrupts NLRP3 signaling pathways to inhibit host immune responses in early Brucella infections.


Asunto(s)
Brucella , Brucelosis , Inflamasomas , Macrófagos Alveolares , Animales , Brucella/metabolismo , Brucelosis/veterinaria , Cabras , Inflamasomas/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Macrófagos Alveolares/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
16.
ACS Omega ; 7(11): 9322-9332, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35350364

RESUMEN

The solid-liquid-gas equation of state (SLV-EOS) is based on the initial cubic equation of state, the van der Waals equation. Since the van der Waals equation is not accurate enough to predict gas-liquid properties, SLV-EOS cannot better predict the gas-liquid properties of hydrocarbons in actual gas reservoirs. Therefore, a modified solid-liquid-gas unified equation of state was constructed inthis paper, which was developed using the material's actual critical compressibility factor Z c. The minimum liquid-phase volume at the triple point is also introduced to limit the value of c in the equation, which effectively avoids the solution of Maxwell's equal-area rule in the solid-liquid transformation process. The model extends the classical Peng-Robinson equation of state for fluid-only (liquid and vapor) states. The predicted p-T and p-ρ phase transition diagrams are reported in this paper for methane, ethane, propane, carbon dioxide, hydrogen sulfide, and sulfur, and they are in good agreement with the experimental data. This methodology is suitable for any substance for which the density of the solid phase is higher than that of the liquid phase. Additionally, the modified SLV equation can be used to estimate the solubility of solid sulfur in the absence of relevant experimental data.

17.
J Microbiol Biotechnol ; 32(1): 6-14, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-34675138

RESUMEN

Brucella spp. are facultative intracellular pathogens that invade, survive and proliferate in numerous phagocytic and non-phagocytic cell types, thereby leading to human and animal brucellosis. Outer membrane proteins (Omps) are major immunogenic and protective antigens that are implicated in Brucella virulence. A strain deleted of the omp16 gene has not been obtained which suggests that the Omp16 protein is vital for Brucella survival. Nevertheless, we previously constructed an omp16 conditional deletion strain of Brucella, ΔOmp16. Here, the virulence and immune response elicted by this strain were assessed in a mouse model of infection. Splenomegaly was significantly reduced at two weeks post-infection in ΔOmp16-infected mice compared to infection with the parental strain. The bacterial load in the spleen also was significantly decreased at this post-infection time point in ΔOmp16-infected mice. Histopathological changes in the spleen were observed via hematoxylineosin staining and microscopic examination which showed that infection with the ΔOmp16 strain alleviated spleen histopathological alterations compared to mice infected with the parental strain. Moreover, the levels of humoral and cellular immunity were similar in both ΔOmp16-infected mice and parental strain-infected mice. The results overall show that the virulence of ΔOmp16 is attenuated markedly, but that the immune responses mediated by the deletion and parental strains in mice are indistinguishable. The data provide important insights that illuminate the pathogenic strategies adopted by Brucella.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Brucella/genética , Brucella/inmunología , Brucelosis/inmunología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Brucelosis/microbiología , Brucelosis/patología , Brucelosis/prevención & control , Citocinas , Modelos Animales de Enfermedad , Femenino , Inmunidad , Inmunidad Celular , Ratones , Ratones Endogámicos BALB C , Bazo/microbiología , Bazo/patología , Virulencia
18.
Clin Oral Investig ; 26(2): 1737-1751, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34515858

RESUMEN

OBJECTIVES: Polyamidoamine (PAMAM) dendrimers have well-defined structures, with monodispersity and easily modified surface groups, and they have broad applications in biomedicine. In this study, phosphorylated PAMAM (P-PAMAM) dendrimers were synthesized based on the idea of mimicking the phosphorylated proteins of dentin non-collagenous proteins (DNCP). Then, proliferation and osteo/odontogenic differentiation effects of P-PAMAM on dental pulp stem cells (DPSCs) were investigated and were compared with DNCP. MATERIALS AND METHODS: P-PAMAM was synthesized via the Mannich-type reaction. DNCP were extracted directly from human dentin with ethylenediaminetetraacetic acid (EDTA) solution. Then, the conditioned medium of P-PAMAM and DNCP were prepared respectively and applied to DPSCs. Proliferation of P-PAMAM was investigated with CCK-8, flow cytometry, and EdU test. Osteo/odontogenic differentiation of P-PAMAM was analyzed using alkaline phosphatase activity and staining, RT-PCR, western blot, alizarin red staining, and immunofluorescence staining. RESULTS: Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance revealed that PAMAM were successfully phosphorylated. Western blot verified that the extracted DNCP contained dentin-related proteins DSPP, OPN, and BMP2. In cell proliferation, there was no apparent difference between P-PAMAM, DNCP, and Control groups (P > 0.05). P-PAMAM and DNCP upregulated related genes and proteins expression (DSPP/DSPP, COL-1/COL-1, ALP/ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN) and matrix mineralization. Still, the potential was lower than that of DNCP (P < 0.05). CONCLUSIONS: P-PAMAM dendrimers, as a biomimetic analog of DNCP, promote osteo/odontogenic differentiation of DPSCs without influencing their proliferation at a low concentration. CLINICAL RELEVANCE: This preliminary study about P-PAMAM dendrimers is expected to provide a more convenient bioactive macromolecular material for the regeneration of the pulp-dentin complex.


Asunto(s)
Pulpa Dental , Osteogénesis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dendrímeros , Dentina , Humanos , Odontogénesis , Poliaminas , Células Madre
19.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34696154

RESUMEN

Traditional tone burst excitation cannot attain a high output resolution, due to the time duration. The received signal is much longer than that of excitation during the propagation, which can increase the difficulty of signal processing, and reduce the resolution. Therefore, it is of significant interest to develop a general methodology for crack quantification through the optimal design of the excitation waveform and signal-processing methods. This paper presents a new crack size quantification method based on high-resolution Lamb waves. The linear chirp (L-Chirp) signal and Golay complementary code (GCC) signal are used as Lamb wave excitation signals. After dispersion removal, these excitation waveforms, based on pulse compression, can effectively improve the inspection resolution in plate-like structures. A series of simulations of both healthy plates and plates with different crack sizes are performed by Abaqus CAE, using different excitation waveforms. The first wave package of the S0 mode after pulse compression is chosen to extract the damage features. A multivariate regression model is proposed to correlate the damage features to the crack size. The effectiveness of the proposed crack size quantification method is verified by a comparison with tone burst excitation, and the accuracy of the crack size quantification method is verified by validation experiments.


Asunto(s)
Compresión de Datos , Procesamiento de Señales Asistido por Computador
20.
Artículo en Inglés | MEDLINE | ID: mdl-34224350

RESUMEN

The responsivity of an ultrasonic transducer is an important parameter in evaluating its effective frequency band, the electroacoustic conversion efficiency, and the measurement capability of the system. The determination of the responsivity of a traditional immersion or contact piezoelectric transducer has been well investigated. However, due to the high attenuation of waves propagating in air and the large acoustic impedance mismatch between the active piezoceramic material and the load medium, there are few reports of the calibration of an air-coupled piezoelectric transducer. In this work, we present a comparative method of measuring the responsivity of an air-coupled transducer: the air-coupled transducer is used to receive a broadband pulse signal to evaluate its frequency spectrum, and a toneburst signal with known vibration displacement is measured by the air-coupled transducer in order to calibrate the amplitude of the responsivity. The effects of transmitter responsivity, input pulse characteristics, attenuation, and diffraction are taken into account to improve the accuracy of the responsivity determination. In addition, the measurement of the amplitude of the responsivity by comparing the measured displacements avoids the complicated task of characterizing the effects of electrical equipment. The determined responsivity is checked by comparing the measured displacements using different methods at different frequencies in order to evaluate its frequency spectrum and by measuring the nonlinearity parameters of the material to evaluate its amplitude. The agreement between results obtained using different methods demonstrates that the calibrated responsivity of the air-coupled transducer is valid, and the proposed method is effective.


Asunto(s)
Transductores , Ultrasonido , Diseño de Equipo , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...