RESUMEN
Endometriosis is a multifactorial gynecological disease, with angiogenesis as a key hallmark. The role of exosomal microRNAs (miRNAs) in endometriosis is not well understood. This study investigates differentially expressed exosomal miRNAs linked to angiogenesis in endometriosis, clarifies their molecular mechanisms, and identifies potential targets. Primary endometrial stromal cells (ESCs) were cultured, and exosomes were extracted. In a co-culture system, ESC-derived exosomes were taken up by human umbilical vein endothelial cells (HUVECs). Endometriosis implant-ESC-derived exosomes (EI-EXOs) significantly promoted HUVEC proliferation, migration and tube formation compared to normal endometrium-exosomes (NE-EXOs), a finding consistent in vivo in mice. MiRNA sequencing and bioinformatics identified differentially expressed miR-21-5p from EI-EXOs, confirmed by RT-qPCR. The miR-21-5p inhibitor or GW4869 attenuated EI-EXO-induced HUVEC proliferation, migration, and tube formation. TIMP3 overexpression diminished the pro-angiogenic effect of EI-EXOs, which was reversed by adding EI-EXOs or upregulating miR-21-5p. These findings validate the crosstalk between ESCs and HUVECs mediated by exosomal miR-21-5p, and confirm the miR-21-5p-TIMP3 axis in promoting angiogenesis in endometriosis. KEY MESSAGES: ESC-derived exosomes were found to be taken up by recipient cells, i.e. HUVECs. Functionally, endometriosis implant-ESC-derived exosomes (EI-EXOs) could significantly promote the proliferation, migration and tube formation of HUVECs compared to normal endometrium-exosomes (NE-EXOs). Through miRNA sequencing and bioinformatics analysis, differentially expressed miR-21-5p released by EI-EXOs was chosen, as confirmed by qRT-PCR. miR-21-5p inhibitor or GW4869 was found to attenuate the proliferation, migration, and tube formation of HUVECs induced by EI-EXOs. In turn, TIMP3 overexpression diminished the pro-angiogenic effect of EI-EXOs, and this angiogenic phenotype was reversed once EI-EXOs were added or miR-21-5p was upregulated.
Asunto(s)
Proliferación Celular , Endometriosis , Endometrio , Exosomas , Células Endoteliales de la Vena Umbilical Humana , MicroARNs , Neovascularización Patológica , Células del Estroma , Inhibidor Tisular de Metaloproteinasa-3 , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Inhibidor Tisular de Metaloproteinasa-3/genética , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Exosomas/metabolismo , Exosomas/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células del Estroma/metabolismo , Animales , Endometrio/metabolismo , Endometrio/patología , Endometriosis/genética , Endometriosis/metabolismo , Endometriosis/patología , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Movimiento Celular/genética , Adulto , AngiogénesisRESUMEN
BACKGROUND: Ovarian cancer (OC) is the predominant primary tumor in the human reproductive system. Abnormal sialylation has a significant impact on tumor development, metastasis, immune evasion, angiogenesis, and treatment resistance. B4GALT5, a gene associated with sialylation, plays a crucial role in ovarian cancer, and may potentially affect clinicopathological characteristics and prognosis. METHODS: We conducted a comprehensive search across TIMER, GEPIA2, GeneMANIA, and Metascape to obtain transcription profiling data of ovarian cancer from The Cancer Genome Atlas (TCGA). The expression of B4GALT5 was test by immunohistochemistry. To investigate the impact of B4GALT5 on growth and programmed cell death in OC cells, we performed transwell assays and western blots. RESULTS: The presence of B4GALT5 was strongly associated with an unfavorable outcome in OC. B4GALT5 significantly promoted the proliferation of OC cells. Upon analyzing gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), it was discovered that B4GALT5 played a crucial role in the extracellular matrix, particularly in collagen-containing structures, and exhibited correlations with ECM-receptor interactions, transcriptional dysregulation in cancer, as well as the interleukin-1 receptor signaling pathway. Furthermore, there is a clear link between B4GALT5 and the tumor immune microenvironment in OC. Moreover, B4GALT5 exhibits favorable expression levels across various types of cancers, including CHOL, KIRC, STAD and UCES. CONCLUSION: In conclusion, it is widely believed that B4GALT5 plays a pivotal role in the growth and progression of OC, with its heightened expression serving as an indicator of unfavorable outcomes. Moreover, B4GALT5 actively participates in shaping the cancer immune microenvironment within OC. This investigation has the potential to contribute significantly to a deeper understanding of the substantial involvement of B4GALT5 in human malignancies, particularly OCs.
Asunto(s)
Neoplasias Ováricas , Microambiente Tumoral , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación CelularRESUMEN
Exosomes play a crucial role in intercellular communication and can be used as biomarkers for diagnostic and therapeutic clinical applications. However, systematic studies in cancer-associated exosomal nucleic acids remain a big challenge. Here, we developed ExMdb, a comprehensive database of exosomal nucleic acid biomarkers and disease-gene associations curated from published literature and high-throughput datasets. We performed a comprehensive curation of exosome properties including 4,586 experimentally supported gene-disease associations, 13,768 diagnostic and therapeutic biomarkers, and 312,049 nucleic acid subcellular locations. To characterize expression variation of exosomal molecules and identify causal factors of complex diseases, we have also collected 164 high-throughput datasets, including bulk and single-cell RNA sequencing (scRNA-seq) data. Based on these datasets, we performed various bioinformatics and statistical analyses to support our conclusions and advance our knowledge of exosome biology. Collectively, our dataset will serve as an essential resource for investigating the regulatory mechanisms of complex diseases and improving the development of diagnostic and therapeutic biomarkers.
Asunto(s)
Conjuntos de Datos como Asunto , Exosomas , Neoplasias , Ácidos Nucleicos , Humanos , Biomarcadores , Biomarcadores de Tumor , Biología Computacional , Exosomas/genética , Neoplasias/diagnóstico , Neoplasias/genética , Ácidos Nucleicos/genética , Bases de Datos GenéticasRESUMEN
Background: Ovarian cancer (OV) is characteristic of high incidence rate and fatality rate in the malignant tumors of female reproductive system. Researches on pathogenesis and therapeutic targets for OV need to be continued. This study mainly analyzed the immune-related pathogenesis and discovered the key immunotherapy targets for OV. Methods: WGCNA was used for excavating hub gene modules and hub genes related to the immunity of OV. Enrichment analysis was aimed to analyze the related pathways of hub gene modules. Biological experiments were used for exploring the effect of hub genes on SKOV3 cells. Results: We identified two hub gene modules related to the immunoscore of OV and found that these genes in the modules were related to the extracellular matrix and viral infections. At the same time, we also discovered six hub genes related to the immunity of OV. Among them, KIF26B and CREB3L1 can affect the proliferation, migration, and invasion of SKOV3 cells by the Wnt/ß-catenin pathway. Conclusions: The local infection or inflammation of ovarian may affect the immunity of OV. KIF26B and CREB3L1 are expected to be potential targets for the immunotherapy of OV.
Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/genética , Matriz Extracelular , Redes Reguladoras de Genes , Inmunoterapia , Proteínas del Tejido Nervioso , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Cinesinas/genéticaRESUMEN
The aim of the present study was to elucidate the role and downstream mechanism of long noncoding RNA (lncRNA) metastasisassociated lung adenocarcinoma transcript 1 (MALAT1) in the process of cervical cancer cell pyroptosis. The effect of inhibiting lncRNA MALAT1 on cervical cancer cells was determined using primary cells isolated from patients and U14 cervical tumorbearing nude mice. The level of lncRNA MALAT1 expression and cell viability were determined for relationship analysis. Pyroptosis was then investigated in HeLa cells with lncRNA MALAT1 knockdown or overexpression with or without lipopolysaccharide (LPS) treatment. Bioinformatics tools were used to identify downstream factors of lncRNA MALAT1, which were subsequently verified by gain or lossoffunction analyses in the process of cervical cancer cell pyroptosis. It was observed that the level of lncRNA MALAT1 was markedly higher in cervical carcinoma cells compared with expression in paracarcinoma cells, and knockdown of lncRNA MALAT1 induced cervical cancer cell death through pyroptosis. By contrast, overexpression of lncRNA MALAT1 blocked LPSinduced pyroptosis. These results, combined with bioinformatics statistical tools, demonstrated that the microRNA (miR)124/sirtuin 1 (SIRT1) axis may affect the progression of cervical cancer at least partly by mediating the effect of lncRNA MALAT1 on the pyroptosis of cervical cancer cells. In conclusion, the lncRNA MALAT1/miR124/SIRT1 regulatory axis in cervical cancer cells may mediate pyroptosis and may provide potential targets against the progression of cervical cancer.
Asunto(s)
MicroARNs , ARN Largo no Codificante , Sirtuinas , Neoplasias del Cuello Uterino , Ratones , Animales , Femenino , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Piroptosis/genética , Neoplasias del Cuello Uterino/genética , Sirtuina 1/genética , Células HeLa , Lipopolisacáridos , Ratones Desnudos , MicroARNs/metabolismoRESUMEN
BACKGROUND: Patients with epithelial ovarian carcinoma (EOC) are usually diagnosed at an advanced stage with tumour cell invasion. However, identifying the underlying molecular mechanisms and biomarkers of EOC proliferation and invasion remains challenging. RESULTS: Herein, we explored the relationship between tumour microenvironment (TME) reprogramming and tissue invasion based on single-cell RNA sequencing (scRNA-seq) datasets. Interestingly, hypoxia, oxidative phosphorylation (OXPHOS) and glycolysis, which have biologically active trajectories during epithelial mesenchymal transition (EMT), were positively correlated. Moreover, energy metabolism and anti-apoptotic activity were found to be critical contributors to intratumor heterogeneity. In addition, HMGA1, EGR1 and RUNX1 were found to be critical drivers of the EMT process in EOC. Experimental validation revealed that suppressing EGR1 expression inhibited tumour cell invasion, significantly upregulated the expression of E-cadherin and decreased the expression of N-cadherin. In cell components analysis, cancer-associated fibroblasts (CAFs) were found to significantly contribute to immune infiltration and tumour invasion, and the accumulation of CAFs was associated with poorer patient survival. CONCLUSION: We revealed the molecular mechanism and biomarkers of tumour invasion and TME reprogramming in EOC, which provides effective targets for the suppression of tumour invasion.
Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Carcinoma Epitelial de Ovario/genética , Neoplasias Ováricas/patología , Microambiente Tumoral/genética , Transición Epitelial-Mesenquimal/genética , Biomarcadores , Línea Celular TumoralRESUMEN
Background: Ovarian cancer is a fatal gynecological malignancy. The resistance to chemotherapy in ovarian cancer treatment has been a thorny issue. This study is aimed at probing the molecular mechanism of cisplatin (DDP) resistance in ovarian cancer. Methods: Bioinformatics analysis was conducted to examine the role of Nod-like receptor protein 3 (NLRP3) in ovarian cancer. The NLRP3 level in DDP-resistant ovarian cancer tumors and cell lines (SKOV3/DDP and A2780/DDP) was evaluated by applying immunohistochemical staining, western blot, and qRT-PCR. Cell transfection was conducted to regulate the NLRP3 level. Cell abilities to proliferate, migrate, invade, and apoptosis were measured employing colony formation, CCK-8, wound healing, transwell, and TUNEL assays, respectively. Cell cycle analysis was completed via flow cytometry. Corresponding protein expression was measured by western blot. Results: NLRP3 was overexpressed in ovarian cancer, correlated with poor survival, and upregulated in DDP-resistant ovarian cancer tumors and cells. NLRP3 silencing exerted antiproliferative, antimigrative, anti-invasive, and proapoptotic effects in A2780/DDP and SKOV3/DDP cells. Additionally, NLRP3 silencing inactivated NLRPL3 inflammasome and blocked epithelial-mesenchymal transition via enhancing E-cadherin and lowering vimentin, N-cadherin, and fibronectin. Conclusion: NLRP3 was overexpressed in DDP-resistant ovarian cancer. NLRP3 knockdown hindered the malignant process of DDP-resistant ovarian cancer cells, providing a potential target for DPP-based ovarian cancer chemotherapy.
Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Cisplatino/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Línea Celular Tumoral , CadherinasRESUMEN
BACKGROUND: Endometriosis (EMs), the ectopic planting of functional endometrium outside of the uterus, is a leading cause of infertility and pelvic pain. As a fundamental mRNA modification, N6-methyladenosine (m6A) participates in various pathological processes. However, the role of m6A RNA modification in endometriosis remains unclear. The present study explores METTL3-mediated m6A modification and the mechanisms involved in endometriosis. METHODS: The dominant m6A regulators in EMs were analysed using RTâPCR. Candidate targets and possible mechanisms of METTL3 were assessed by m6A-mRNA epitranscriptomic microarray and RNA sequencing. A primary ESCs model was employed to verify the effect of METTL3 on m6A modification of SIRT1 mRNA, and the mechanism was elucidated by RTâPCR, Western blotting, MeRIP, and RIP assays. CCK-8 viability assays, Transwell invasion assays, EdU proliferation assays, wound healing migration assays, and senescence-associated ß-galactosidase staining were performed to illuminate the potential biological mechanism of METTL3 and SIRT1 in ESCs in vitro. An in vivo PgrCre/ + METTL3 -/- female homozygous mouse model and a nude mouse xenograft model were employed to further investigate the physiologic consequences of METTL3-mediated m6A alteration on EMs. RESULTS: Our data show that decreased METTL3 expression significantly downregulates m6A RNA methylation levels in ESCs. Silencing m6A modifications mediated by METTL3 accelerates ESCs viability, proliferation, migration, and invasion in vitro. The m6A reader protein YTHDF2 binds to m6A modifications to induce the degradation of SIRT1 mRNA. SIRT1/FOXO3a signalling pathway activation is subsequently inhibited, promoting the cellular senescence of ESCs and inhibiting the ectopic implantation of ESCs in vitro and in vivo. CONCLUSIONS: Our findings demonstrate that METTL3-mediated m6A methylation epigenetically regulates the ectopic implantation of ESCs, resulting in the progression of endometriosis. Our study establishes METTL3-YTHDF2-SIRT1/FOXO3a as a critical axis and potential mechanism in endometriosis.
Asunto(s)
Endometriosis , Sirtuina 1 , Femenino , Humanos , Animales , Ratones , Sirtuina 1/genética , Endometriosis/genética , Senescencia Celular , ARN , Metiltransferasas/genéticaRESUMEN
Background: Endometriosis (EM) is a benign, multifactorial, immune-mediated inflammatory disease that is characterized by persistent activation of the NF-κB signaling pathway and some features of malignancies, such as proliferation and lymphangiogenesis. To date, the pathogenesis of EM is still unclear. In this study, we investigated whether BST2 plays a role in the development of EM. Methods: Bioinformatic analysis was performed with data from public databases to identify potential candidate targets for drug treatment. Experiments were conducted at the cell, tissue, and mouse EM model levels to characterize the aberrant expression patterns, molecular mechanisms, biological behaviors of endometriosis as well as treatment outcomes. Results: BST2 was significantly upregulated in ectopic endometrial tissues and cells compared with control samples. Functional studies indicated that BST2 promoted proliferation, migration, and lymphangiogenesis and inhibited apoptosis in vitro and in vivo. The transcription factor (TF) IRF6 induced high BST2 expression by directly binding the BST2 promoter. The underlying mechanism by which BST2 functions in EM was closely related to the canonical NF-κB signaling pathway. New lymphatic vessels may serve as a channel for the infiltration of immune cells into the endometriotic microenvironment; these immune cells further produce the proinflammatory cytokine IL-1ß, which in turn further activates the NF-κB pathway to promote lymphangiogenesis in endometriosis. Conclusion: Taken together, our findings provide novel insight into the mechanism by which BST2 participates in a feedback loop with the NF-κB signaling pathway and reveal a novel biomarker and potential therapeutic target for endometriosis.
Asunto(s)
Endometriosis , FN-kappa B , Humanos , Femenino , Animales , Ratones , FN-kappa B/metabolismo , Endometriosis/patología , Transducción de Señal , Regulación de la Expresión Génica , Apoptosis , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Glicoproteínas de Membrana/metabolismoRESUMEN
An RNA modification known as N6-methyladenosine (m6A) interacts with a range of coding and non-coding RNAs. The majority of the research has focused on identifying m6A regulators that are differentially expressed in endometriosis, but it has ignored their mechanisms that are derived from the alterations of modifications among RNAs, affecting the disease progression primarily. Here, we aimed to investigate the potential roles of m6A regulators in the diagnostic potency, immune microenvironment, and clinicopathological features of endometriosis through interacting genes. A GEO cohort was incorporated into this study. Variance expression profiling was executed via the "limma" R package. Pearson analysis was performed to investigate the correlations among 767 interacting lncRNAs, 374 interacting mRNAs, and 23 m6A regulators. K-means clustering analysis, based on patterns of mRNA modifications, was applied to perform clinical feature analysis. Infiltrating immune cells and stromal cells were calculated using the Cibersort method. An m6A-related risk model was created and supported by an independent risk assay. LASSO regression analysis and Cox analyses were implemented to determine the diagnostic genes. The diagnostic targets of endometriosis were verified using PCR and the WB method. Results: A thorough investigation of the m6A modification patterns in the GEO database was carried out, based on mRNAs and lncRNAs related to these m6A regulators. Two molecular subtypes were identified using unsupervised clustering analysis, resulting in further complex infiltration levels of immune microenvironment cells in diversified endometriosis pathology types. We identified two m6A regulators, namely METTL3 and YTHDF2, as diagnostic targets of endometriosis following the usage of overlapping genes to construct a diagnostic m6A signature of endometriosis through multivariate logistic regression, and we validated it using independent GSE86534 and GSE105764 cohorts. Finally, we found that m6A alterations might be one of the important reasons for the progression of endometriosis, especially with significant downregulation of the expressions of METTL3 and YTHDF2. Finally, m6A modification patterns have significant effects on the diversity and complexity of the progression and immune microenvironment, and might be key diagnostic markers for endometriosis.
Asunto(s)
Endometriosis , Metiltransferasas , Proteínas de Unión al ARN , Femenino , Humanos , Adenosina/genética , Fenómenos Fisiológicos Celulares , Endometriosis/diagnóstico , Endometriosis/genética , Metiltransferasas/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Factores de Transcripción , Proteínas de Unión al ARN/genéticaRESUMEN
The endosymbiotic bacterium Wolbachia pipientis blocks replication of several arboviruses in transinfected Aedes aegypti mosquitoes. However, the mechanism of virus blocking remains poorly understood. Here, we characterized an RNase HI gene from Wolbachia, which is rapidly induced in response to dengue virus (DENV) infection. Knocking down w RNase HI using antisense RNA in Wolbachia-transinfected mosquito cell lines and A. aegypti mosquitoes led to increased DENV replication. Furthermore, overexpression of wRNase HI, in the absence of Wolbachia, led to reduced replication of a positive sense RNA virus, but had no effect on a negative sense RNA virus, a familiar scenario in Wolbachia-infected cells. Altogether, our results provide compelling evidence for the missing link between early Wolbachia-mediated virus blocking and degradation of viral RNA. These findings and the successful pioneered knockdown of Wolbachia genes using antisense RNA in cell line and mosquitoes enable new ways to manipulate and study the complex endosymbiont-host interactions.
RESUMEN
Background: Endometriosis is an inflammatory gynecological disease leading to deep pelvic pain, dyspareunia, and infertility. The pathophysiology of endometriosis is complex and depends on a variety of biological processes and pathways. Therefore, there is an urgent need to identify reliable biomarkers for early detection and accurate diagnosis to predict clinical outcomes and aid in the early intervention of endometriosis. We screened transcription factor- (TF-) immune-related gene (IRG) regulatory networks as potential biomarkers to reveal new molecular subgroups for the early diagnosis of endometriosis. Methods: To explore potential therapeutic targets for endometriosis, the Gene Expression Omnibus (GEO), Immunology Database and Analysis Portal (ImmPort), and TF databases were used to obtain data related to the recognition of differentially expressed genes (DEGs), differentially expressed IRGs (DEIRGs), and differentially expressed TFs (DETFs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the DETFs and DEIRGs. Then, DETFs and DEIRGs were further validated in the external datasets of GSE51981 and GSE1230103. Then, we used quantitative real-time polymerase chain reaction (qRT-PCR) to verify the hub genes. Simultaneously, the Pearson correlation analysis and protein-protein interaction (PPI) analyses were used to indicate the potential mechanisms of TF-IRGs at the molecular level and obtain hub IRGs. Finally, the receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic value of the hub IRGs. Results: We screened a total of 94 DETFs and 121 DEIRGs in endometriosis. Most downregulated DETFs showed decreased expression in the endometria of moderate/severe endometriosis patients. The top-ranked upregulated DEIRGs were upregulated in the endometra of infertile women. Functional analysis showed that DETFs and DEIRGs may be involved in the biological behaviors and pathways of endometriosis. The TF-IRG PPI network was successfully constructed. Compared with the control group, high C3, VCAM1, ITGB2, and C3AR1 expression had statistical significance in endometriosis among the hub DEIRGs. They also showed higher sensitivity and specificity by ROC analysis for the diagnosis of endometriosis. Finally, compared with controls, C3 and VCAM1 were highly expressed in endometriosis tissue samples. In addition, they also showed high specificity and sensitivity for diagnosing endometriosis. Conclusion: Overall, we discovered the TF-IRG regulatory network and analyzed 4 hub IRGs that were closely related to endometriosis, which contributes to the diagnosis of endometriosis. Additionally, we verified that DETFs or DEIRGs were associated with the clinicopathological features of endometriosis, and external datasets also confirmed the hub IRGs. Finally, C3 and VCAM1 were highly expressed in endometriosis tissue samples compared with controls and may be potential biomarkers of endometriosis, which are helpful for the early diagnosis of endometriosis.
Asunto(s)
Endometriosis , Infertilidad Femenina , Femenino , Humanos , Endometriosis/diagnóstico , Endometriosis/genética , Biomarcadores , Bases de Datos Factuales , EndometrioRESUMEN
Aim: To identify epigenetic alterations of differentially expressed genes and screen out targeted therapeutic drugs in endometriosis. Methods: Based on the Gene Expression Omnibus database and a series of biological information analysis tools, supplemented by validation of clinical samples, aberrant DNA methylation-driven genes and their functions were explored, as well as possible targeted drugs. Results: This study screened out a range of DNA methylation-driven genes that were associated with powerful properties and corresponding pathways. Among them, BDNF and CCL2 were key genes in the development of endometriosis. Four chemical agents have been flagged as potential treatments for endometriosis. Conclusion: These candidate genes and small-molecule agents may be further explored as potential targets and drugs for endometriosis diagnosis and therapy, respectively.
What is the significance of studying endometriosis? Endometriosis is a common gynecological benign disease affecting an estimated 510% of women in their reproductive years. Women with endometriosis suffer from chronic pelvic pain, dyspareunia and dysmenorrhea, and some patients face the possibility of infertility. What were the results of this study? The authors explored a number of key genes that may contribute to the etiology and pathogenesis of endometriosis, discussed the reasons for the changes in the expression levels of these hub genes and then screened for a number of effective small-molecule chemical drugs that may act on endometriosis. What do the results of this study mean? The authors carried out research from the three aspects of etiology, diagnosis and treatment of endometriosis. First, it demonstrated that endometriosis patients did have some differentially expressed genes compared with controls, and then in the analysis of these abnormally expressed genes, it was found that DNA methylation may play an essential role. This is a more meaningful hint, whether the occurrence of endometriosis can be suppressed by targeting methylation modification and then affecting the expression of key genes. In addition, the different severity of endometriosis will also have varying degrees of impact on patients' quality of life. These results are also a good indicator of the severity of endometriosis. Therefore, early detection and timely treatment are guidelines for the treatment of endometriosis. Finally, some of the chemical agents identified to target the cause of endometriosis are expected to become new treatments for endometriosis, supported by the results of follow-up studies, which will lead to more accurate treatments for patients with fewer side effects than existing treatments.
Asunto(s)
Endometriosis , Femenino , Humanos , Endometriosis/diagnóstico , Endometriosis/genética , Endometriosis/complicaciones , Metilación de ADN , Marcadores GenéticosRESUMEN
BACKGROUND: Endometriosis is one of the most common gynecological diseases, and seriously reduces the quality of life of patients. However, the pathogenesis of this disease is unclear. Therefore, more studies are needed to elucidate its pathogenesis. Our previous publication found that the Sonic Hedgehog (SHH) signaling pathway was activated in endometriosis. This study tested whether SHH signaling in endometrial stromal cells (ESCs) was critical for the pathogenesis of endometriosis. METHODS: To examine the effect of inhibiting the SHH signaling pathway on endometriosis, we first isolated ESCs from eutopic endometrial tissues of patients with or without endometriosis and identified the extracted cells by morphological observation and immunofluorescence. Then, we treated ESCs with the GLI inhibitor GANT61 and used CCK-8, wound healing and invasion assays to detect cell activities, such as proliferation, invasion and metastasis. Furthermore, we detected the expression of key proteins and proliferation markers of the SHH signaling pathway in the lesions of nude mice using immunochemistry. RESULTS: We demonstrated that higher concentrations of GANT61 decreased the proliferation rate and migration distance of ESCs. We observed that GANT61 inhibited the invasion of ESCs. In addition, blockage of the SHH signaling pathway significantly reduced cell proliferation in vitro. CONCLUSIONS: Our study suggested that inhibition of the SHH pathway is involved in cell proliferation and invasive growth in the pathogenesis of endometriosis.
Asunto(s)
Endometriosis , Animales , Endometriosis/metabolismo , Endometriosis/patología , Femenino , Proteínas Hedgehog , Humanos , Ratones , Ratones Desnudos , Calidad de Vida , Transducción de SeñalRESUMEN
Tumor metabolism plays a critical role in tumor progression. However, the interaction between metabolism and tumor microenvironment (TME) has not been comprehensively revealed in colon adenocarcinoma (COAD). We used unsupervised consensus clustering to establish three molecular subtypes (clusters) based on the enrichment score of four major metabolism pathways in TCGA-COAD dataset. GSE17536 was used as a validation dataset. Single-cell RNA sequencing data (GSE161277) was employed to further verify the reliability of subtyping and characterize the correlation between metabolism and TME. Three clusters were identified and they performed distinct prognosis and molecular features. Clust3 had the worst overall survival and the highest enrichment score of glycolysis. 86 differentially expressed genes (DEGs) were identified, in which 11 DEGs were associated with favorable prognosis and 75 DEGs were associated with poor prognosis. Striking correlations were observed between hypoxia and glycolysis, clust3 and hypoxia, and clust3 and angiogenesis (P < 0.001).We constructed a molecular subtyping system which was effective and reliable for predicting COAD prognosis. The 86 identified key DEGs may be greatly involved in COAD progression, and they provide new perspectives and directions for further understanding the mechanism of metabolism in promoting aggressive phenotype by interacting with TME.
RESUMEN
Cryptochromes are blue light receptors that regulate plant growth and development. They also act as the core components of the central clock oscillator in animals. Although plant cryptochromes have been reported to regulate the circadian clock in blue light, how they do so is unclear. Here we show that Arabidopsis cryptochrome 2 (CRY2) forms photobodies with the TCP22 transcription factor in response to blue light in plant cells. We provide evidence that PPK kinases influence the characteristics of these photobodies and that together these components, along with LWD transcriptional regulators, can positively regulate the expression of CCA1 encoding a central component of the circadian oscillator.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano , Criptocromos/genética , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Endometriosis is a benign gynecological disease sharing several features with malignant tumor. Cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a potential target of miR-21-5p, is downregulated in endometriotic specimens. However, the function of CPEB3 in endometriosis is elusive. In this study, in cultured primary human endometrial stromal cells (ESCs), the overexpression and inhibition of CPEB3 were achieved by transduction of adenovirus-mediated CPEB3 overexpressed plasmid and shRNA, respectively. Functional analysis uncovered that upregulated CPEB3 reduced cell viability and arrested cell cycle entry. The expression of cyclin D1 and c-Myc was decreased after CPEB3 overexpression. Overexpression of CPEB3 facilitated ESC apoptotic potential, accompanied by increased Bax, cleaved-caspase 3 and cleaved-caspase 9, and reduced Bcl2. Moreover, elevated CPEB3 weakened migration and invasion abilities of ESCs. CPEB3 overexpression also reduced the expression of fibronectin and vimentin and the activities of matrix metalloproteinase (MMP)-9 and MMP-2. Interestingly, these effects were counteracted by CPEB3 inhibition. Furthermore, CPEB3 controlled the protein level of CXCL12, a homeostatic chemokine. CXCL12 elevation partially reversed the effects of CPEB3 on inhibiting ESC proliferation, migration and invasion, and promoting apoptosis. Based on these findings, it seems possible that CPEB3, as a critical player, attenuated the progression of endometriosis through repressing CXCL12 expression.
Asunto(s)
Endometriosis , MicroARNs , Movimiento Celular/genética , Proliferación Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Endometriosis/genética , Endometriosis/patología , Endometrio/metabolismo , Femenino , Humanos , MicroARNs/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patologíaRESUMEN
Background: Endometriosis is a serious gynecological disorder characterized by debilitating pain, infertility and the establishment of innervated endometriosis lesions outside the uterus. Early detection and accurate diagnosis are pivotal in endometriosis. The work screened autophagy-related genes (ATGs) as potential biomarkers to reveal new molecular subgroups for the early diagnosis of endometriosis. Materials and Methods: The gene lists of ATGs from five databases were integrated. Then, weighted gene co-expression network analysis (WGCNA) was used to map the genes to the gene profile of endometriosis samples in GSE51981 to obtain functional modules. GO and KEGG analyses were performed on the ATGs from the key modules. Differentially expressed ATGs were identified by the limma R package and further validated in the external datasets of GSE7305 and GSE135485. The DESeq2 R package was utilized to establish multifactorial network. Subsequently, one-way analysis of variance (ANOVA) was performed to identify new molecular subgroups. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to confirm the differential expression of hub ATGs, and the receiver operating characteristic (ROC) curve analysis and Spearman correlation analysis were applied to assess the diagnostic value of hub ATGs in 40 clinical samples and human primary endometrial stromal cells (ESCs). Results: We screened 4 key modules and 12 hub ATGs and found the key genes to be strongly correlated with endometriosis. The pathways of ATGs were mainly enriched in autophagy, apoptosis, ubiquitin-protein ligase binding, and MAPK signaling pathway. The expression levels of EZH2 (Enhancer of Zeste homolog 2) and RND3 (also known as RhoE) had statistically significant changes with higher values in the endometriosis group compared with the controls, both in the tissue samples and primary ESCs. Besides, they also showed higher specificity and sensitivity by the receiver operating characteristic analysis and Spearman correlation analysis for the diagnosis of endometriosis. The TF-mRNA-miRNA-lncRNA multifactorial network was successfully constructed. Four new molecular subgroups were identified, and we preliminarily showed the ability of IQCG to independently differentiate subgroups. Conclusion: EZH2 and RND3 could be candidate biomarkers for endometriosis, which would contribute to the early diagnosis and intervention in endometriosis.
RESUMEN
Emerging studies have clarified the critical role of LncRNA MALAT1 in various pathological progressions. Here, we identified its positive relationship with cervical carcinoma proliferation. Cervical carcinoma has been considered as one of the most malignant tumors among female. Thus, our study was designed to investigate the underlying mechanism of LncRNA MALAT1 on cervical tumor cell proliferation. We observed that miR-124 was the potential target of LncRNA MALAT1 in cervical tumor cell lines (Hela, C-33A, Caski, and SiHa), the expression level of which is negatively correlated with LncRNA MALAT1 in cervical tumor cells, tissues of cervical patients, and mice. Gain- or loss-of-function analyses in cervical tumor cells have further verified the regulatory role of MALAT1 on miR-124. Additionally, the proliferation of cervical carcinoma was inhibited by miR-124 overexpression, whereas it was blocked by LV-MALAT1 transfection. In vivo assays, overexpression of miR-124, or knockdown of MALAT1 exhibited beneficial effects on tumor weight, size, and volume, together with elevating the survival rate, tightly related with the progression of cervical cancer. In conclusion, LncRNA MALAT1 disabled the effects of miR-124 as an inhibitory sponge, accelerating the progression of cervical carcinoma.
RESUMEN
Mosquito vectors transmit various diseases through blood feeding, required for their egg development. Hence, blood feeding is a major physiological event in their life cycle, during which hundreds of genes are tightly regulated. Blood is a rich source of proteins for mosquitoes, but also contains many other molecules including microRNAs (miRNAs). Here, we found that human blood miRNAs are transported abundantly into the fat body tissue of Aedes aegypti, a key metabolic center in post-blood feeding reproductive events, where they target and regulate mosquito genes. Using an artificial diet spiked with the mimic of an abundant and stable human blood miRNA, hsa-miR-21-5p, and proteomics analysis, we found over 40 proteins showing differential expression in female Ae. aegypti mosquitoes after feeding. Of interest, we found that the miRNA positively regulates the vitellogenin gene, coding for a yolk protein produced in the mosquito fat body and then transported to the ovaries as a protein source for egg production. Inhibition of hsa-miR-21-5p followed by human blood feeding led to a statistically insignificant reduction in progeny production. The results provide another example of the involvement of small regulatory molecules in the interaction of taxonomically vastly different taxa.