Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Environ Sci (China) ; 146: 226-236, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969450

RESUMEN

Defluoridation of coal mining water is of great significance for sustainable development of coal industry in western China. A novel one-step mechanochemical method was developed to prepare polymeric aluminum modified powder activated carbon (PAC) for effective fluoride removal from coal mining water. Aluminum was stably loaded on the PAC through facile solid-phase reaction between polymeric aluminum (polyaluminum chloride (PACl) or polyaluminum ferric chloride (PAFC)) and PAC (1:15 W/W). Fluoride adsorption on PACl and PAFC modified PAC (C-PACl and C-PAFC) all reached equilibrium within 5 min, at rate of 2.56 g mg-1 sec-1 and 1.31 g mg-1 sec-1 respectively. Larger increase of binding energy of Al on C-PACl (AlF bond: 76.64 eV and AlFOH bond: 77.70 eV) relative to that of Al on C-PAFC (AlF bond: 76.52 eV) explained higher fluoride uptake capacity of C-PACl. Less chloride was released from C-PACl than that from C-PAFC due to its higher proportion of covalent chlorine and lower proportion of ionic chlorine. The elements mapping and atomic composition proved the stability of Al loaded on the PAC as well as the enrichment of fluoride on both C-PACl and C-PAFC. The Bader charge, formation energy and bond length obtained from DFT computational results explained the fluoride adsorption mechanism further. The carbon emission was 7.73 kg CO2-eq/kg adsorbent prepared through mechanochemical process, which was as low as 1:82.3 to 1:8.07 × 104 compared with the ones prepared by conventional hydrothermal methods.


Asunto(s)
Carbón Orgánico , Minas de Carbón , Fluoruros , Contaminantes Químicos del Agua , Fluoruros/química , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Adsorción , Aluminio/química , Polímeros/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
2.
ACS Omega ; 9(26): 28726-28737, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973893

RESUMEN

Constructing underground reservoirs in coal mines can effectively improve the recycling of mine water. Water-rock interactions within underground reservoirs have been demonstrated to improve water quality; however, the mechanisms underlying these water-rock interactions remain unclear, hindering the widespread applications of underground reservoirs. Thus, this study focused on the underground reservoir of the Shendong Daliuta coal mine. Through on-site sampling tests and single-mineral leaching experiments, combined with X-ray diffraction, X-ray fluorescence spectrometry, and scanning electron microscopy, the water quality characteristics of the inlet and outlet water samples from the coal mine underground reservoir were analyzed. Moreover, the physical and chemical properties of the collapsed rocks in the reservoir were investigated, with the aim of clarifying the mechanism underlying the water-rock interactions in coal mine underground reservoirs. The results revealed a significant self-purification effect of the coal mine underground reservoir. Compared with the inlet water sample, the outlet water sample featured substantially reduced amounts of solid-suspended substances, turbidity, total dissolved solids, and electrical conductivity, with the average removal rates of Fe and Mn approaching 98.73 and 92.12%, respectively. Along the flow direction of the inlet and outlet water of the coal mine underground reservoir, the concentrations of Na+ and Cl- presented an increasing trend, whereas the concentrations of Ca2+, Mg2+, and HCO3 - presented a decreasing trend. The concentration of K+ changed insignificantly, while the concentration of SO4 2- fluctuated unstably. The collapsed rocks in the Daliuta coal mine underground reservoir primarily comprised mudstone and sandstone with mineral components including quartz, orthoclase, albite, illite, kaolinite, glauconite, calcite, and pyrite. Among these, kaolinite exhibited the strongest adsorption capacity for Na+, Ca2+, and Mg2+ present in the mine water, while glauconite demonstrated the strongest dissolution capacity for Mg2+. Illite presented the strongest dissolution capacity for K+, while albite presented the strongest dissolution capacity for Na+. The water-rock interactions within the coal mine underground reservoir primarily included dissolution and adsorption processes, wherein mudstone and fine sandstone both played dominant roles in the adsorption of Ca2+, as well as in the dissolution of K+, Na+, and Mg2+. In particular, mudstone exhibited a stronger adsorption capacity than fine sandstone, whereas fine sandstone presented a stronger dissolution capacity than mudstone. Thus, our results offer theoretical guidance for understanding water quality purification mechanisms in coal mine underground reservoirs.

3.
Cardiooncology ; 10(1): 35, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863010

RESUMEN

PURPOSE: Immune checkpoint inhibitors (ICIs)-associated myocarditis was a rare yet severe complication observed in individuals undergoing immunotherapy. This study investigated the immune status and characteristics of patients diagnosed with ICIs- associated myocarditis. METHODS: A total of seven patients diagnosed with ICIs-associated myocarditis were included in the study, while five tumor patients without myocarditis were recruited as reference controls. Additionally, 30 healthy individuals were recruited as blank controls. Biochemical indices, electrocardiogram, and echocardiography measurements were obtained both prior to and following the occurrence of myocarditis. High-throughput sequencing of T cell receptor (TCR) was employed to assess the diversity and distribution characteristics of TCR CDR3 length, as well as the diversity of variable (V) and joining (J) genes of T lymphocytes in peripheral blood. RESULTS: In the seven patients with ICIs-associated myocarditis, Troponin T (TNT) levels exhibited a significant increase following myocarditis, while other parameters such as brain natriuretic peptide (BNP), QTc interval, and left ventricular ejection fraction (LVEF) did not show any significant differences. Through sequencing, it was observed that the diversity and uniformity of CDR3 in the ICIs-associated myocarditis patients were significantly diminished. Additionally, the distribution of CDR3 nucleotides deviated from normality, and variations in the utilization of V and J gene segments. CONCLUSION: The reconstitution of the TCR immune repertoire may play a pivotal role in the recognition of antigens in patients with ICIs-associated myocarditis.

4.
Biochem Genet ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850375

RESUMEN

The lateral organ boundaries domain (LBD) plays a vital role as a transcriptional coactivator within plants, serving as an indispensable function in growth, development, and stress response. In a previous study, we found that the LBD genes of Pseudoroegneria libanotica (a maternal donor for three-quarter of perennial Triticeae species with good stress resistance, holds great significance in exploring its response mechanisms to abiotic stress for the Triticeae tribe) might be involved in responding to drought stress. Therefore, we further identified the LBD gene family in this study. A total of 29 PseLBDs were identified. Among them, 24 were categorized into subclass I, while 5 fell into subclass II. The identification of cis-acting elements reveals the extensive involvement of PseLBDs in various biological processes in P. libanotica. Collinearity analysis indicates that 86% of PseLBDs were single-copy genes and have undergone a single whole-genome duplication event. Transcriptomic differential expression analysis of PseLBDs under drought stress reveals that the most likely candidates for responding to abiotic stress were PseLBD1 and PseLBD12. They have been demonstrated to respond to drought, salt, heavy metal, and heat stress in yeast. Furthermore, it is plausible that functional divergence might have occurred among their orthologous genes in wheat. This study not only establishes a foundation for a deeper understanding of the biological roles of PseLBDs in P. libanotica but also unveils novel potential genes for enhancing the genetic background of crops within Triticeae crops, such as wheat.

5.
Cell Biochem Biophys ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849694

RESUMEN

Sensorineural hearing loss (SNHL), a multifactorial progressive disorder, results from a complex interplay of genetic and environmental factors, with its underlying mechanisms remaining unclear. Several pathological factors are believed to contribute to SNHL, including genetic factors, ion homeostasis, cell apoptosis, immune inflammatory responses, oxidative stress, hormones, metabolic syndrome, human cytomegalovirus infection, mitochondrial damage, and impaired autophagy. These factors collectively interact and play significant roles in the onset and progression of SNHL. The present review offers a comprehensive overview of the various factors that contribute to SNHL, emphasizes recent developments in understanding its etiology, and explores relevant preventive and intervention measures.

6.
Plant Physiol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917222

RESUMEN

Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human Cd intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation, distribution, and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTL) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL_DT) population derived from two Polish wheat varieties (dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16-17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; three other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPWgenotypes of the RIL_DT population and two other natural populations, based on a KASP marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.

7.
Physiol Mol Biol Plants ; 30(3): 467-481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633269

RESUMEN

The basic helix-loop-helix (bHLH) transcription factor family is the second largest in plants. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction, and secondary metabolism, but also plays an important role in plant response to stress. However, the function of bHLH TFs in Pseudoroegneria species has not been studied yet. Pseudoroegneria (Nevski) Á. Löve is a perennial genus of the Triticeae. Pseudoroegneria species are mostly distributed in arid/semi-arid areas and they show good drought tolerance. In this study, we identified 152 PlbHLH TFs in Pseudoroegneria libanotica, which could be classified into 15 groups. Collinearity analysis indicates that 122 PlbHLH genes share homology with wbHLH genes in wheat, and it has lower homology with AtbHLH genes in Arabidopsis. Based on transcriptome profiling under an experiment with three PEG concentrations (0%, 10%, and 20%), 10 up-regulated genes and 11 down-regulated PlbHLH genes were screened. Among them, PlbHLH6, PlbHLH55 and PlbHLH64 as candidate genes may be the key genes related to drought tolerance response at germination, and they have been demonstrated to respond to drought, salt, oxidative, heat, and heavy metal stress in yeast. This study lays the foundation for an in-depth study of the biological roles of PlbHLHs in Pse. libanotica, and discovered new drought-tolerance candidate genes to enhance the genetic background of Triticeae crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01433-w.

8.
Plant Physiol ; 195(2): 1365-1381, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38471799

RESUMEN

Several starch synthesis regulators have been identified, but these regulators are situated in the terminus of the regulatory network. Their upstream regulators and the complex regulatory network formed between these regulators remain largely unknown. A previous study demonstrated that NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20 and OsNAC26 (OsNAC20/26), redundantly and positively regulate the accumulation of storage material in rice (Oryza sativa) endosperm. In this study, we detected OsNAC25 as an upstream regulator and interacting protein of OsNAC20/26. Both OsNAC25 mutation and OE resulted in a chalky seed phenotype, decreased starch content, and reduced expression of starch synthesis-related genes, but the mechanisms were different. In the osnac25 mutant, decreased expression of OsNAC20/26 resulted in reduced starch synthesis; however, in OsNAC25-overexpressing plants, the OsNAC25-OsNAC20/26 complex inhibited OsNAC20/26 binding to the promoter of starch synthesis-related genes. In addition, OsNAC20/26 positively regulated OsNAC25. Therefore, the mutual regulation between OsNAC25 and OsNAC20/26 forms a positive regulatory loop to stimulate the expression of starch synthesis-related genes and meet the great demand for starch accumulation in the grain filling stage. Simultaneously, a negative regulatory loop forms among the 3 proteins to avoid the excessive expression of starch synthesis-related genes. Collectively, our findings demonstrate that both promotion and inhibition mechanisms between OsNAC25 and OsNAC20/26 are essential for maintaining stable expression of starch synthesis-related genes and normal starch accumulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Almidón , Factores de Transcripción , Oryza/genética , Oryza/metabolismo , Almidón/metabolismo , Almidón/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Endospermo/metabolismo , Endospermo/genética
9.
Genes Genomics ; 46(5): 589-599, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38536618

RESUMEN

BACKGROUND: Elymus atratus (Nevski) Hand.-Mazz. is perennial hexaploid wheatgrass. It was assigned to the genus Elymus L. sensu stricto based on morphological characters. Its genome constitution has not been disentangled yet. OBJECTIVE: To identify the genome constitution and origin of E. atratus. METHODS: In this study, genomic in situ hybridization and fluorescence in situ hybridization, and phylogenetic analysis based on the Acc1, DMC1 and matK sequences were performed. RESULTS: Genomic in situ hybridization and fluorescence in situ hybridization results reveal that E. atratus 2n = 6x = 42 is composed of 14 St genome chromosomes, 14 H genome chromosomes, and 14 Y genome chromosomes including two H-Y type translocation chromosomes, suggesting that the genome formula of E. atratus is StStYYHH. The phylogenetic analysis based on Acc1 and DMC1 sequences not only shows that the Y genome originated in a separate diploid, but also suggests that Pseudoroegneria (St), Hordeum (H), and a diploid species with Y genome were the potential donors of E. atratus. Data from chloroplast DNA showed that the maternal donor of E. atratus contains the St genome. CONCLUSION: Elymus atratus is an allohexaploid species with StYH genome, which may have originated through the hybridization between an allotetraploid Roegneria (StY) species as the maternal donor and a diploid Hordeum (H) species as the paternal donor.


Asunto(s)
Elymus , Hordeum , Elymus/genética , Filogenia , Hibridación Fluorescente in Situ , Genoma de Planta , Hordeum/genética
10.
BMC Genomics ; 25(1): 253, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448864

RESUMEN

BACKGROUND: The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae), whose genome symbol was designed as "St", accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome, exhibited strong drought resistance, and was morphologically covered by cuticular wax on the aerial part. Therefore, the St-genome sequencing data could provide fundamental information for studies of genome evolution and reveal its mechanisms of cuticular wax and drought resistance. RESULTS: In this study, we reported the chromosome-level genome assembly for the St genome of Pse. libanotica, with a total size of 2.99 Gb. 46,369 protein-coding genes annotated and 71.62% was repeat sequences. Comparative analyses revealed that the genus Pseudoroegneria diverged during the middle and late Miocene. During this period, unique genes, gene family expansion, and contraction in Pse. libanotica were enriched in biotic and abiotic stresses, such as fatty acid biosynthesis which may greatly contribute to its drought adaption. Furthermore, we investigated genes associated with the cuticular wax formation and water deficit and found a new Kcs gene evm.TU.CTG175.54. It plays a critical role in the very long chain fatty acid (VLCFA) elongation from C18 to C26 in Pse. libanotica. The function needs more evidence to be verified. CONCLUSIONS: We sequenced and assembled the St genome in Triticeae and discovered a new KCS gene that plays a role in wax extension to cope with drought. Our study lays a foundation for the genome diversification of Triticeae species and deciphers cuticular wax formation genes involved in drought resistance.


Asunto(s)
Resistencia a la Sequía , Elymus , Mapeo Cromosómico , Cromosomas , Ácidos Grasos
11.
Front Nutr ; 11: 1344699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549748

RESUMEN

Background and aim: Gallstone disease (GSD) is a major public health problem worldwide. The dietary inflammatory index (DII) and the energy-adjusted DII (E-DII) have been used to describe dietary inflammatory potential. The current study sought to investigate the pro-inflammatory role of diet on GSD among outpatients in the United States. Methods: Cross-sectional data from 7,334 individuals older than 20 years who participated in the National Health and Nutrition Examination Survey (NHANES) from January 2017 to March 2020 were obtained. The relationship between GSD and DII was assessed using self-reported data. An association between DII and the risk of GSD was determined using sample-weighted logistic regression and restricted cubic splines (RCS). Subgroup analyzes were conducted to assess the interaction between DII and related factors. Sensitivity analysis was further used to confirm the stability of the relationship. To control for the effect of total energy intake, E-DII was calculated and analyzed. Results: A total of 10.5% of the study participants had GSD. The DII ranged from -5.52 to 5.51, and the median DII was significantly higher for participants with GSD than those without (1.68 vs. 1.23, p < 0.001). There was a significant and stable positive relationship between DII and GSD in adjusted models (OR 1.10, 95% CI 1.00-1.20). In the fully adjusted model, subjects with DII scores in the highest tertile were more likely to have GSD than those in the lowest tertile (OR 1.52, 95% CI 1.19-1.93). An apparent dose-response association between DII and GSD was detected. The association between E-DII and GSD remained stable. Conclusion: Higher DII/E-DII scores linked to the intake of a pro-inflammatory diet were positively associated with a higher risk of GSD. These findings suggest that pro-inflammatory dietary patterns can promote the formation of gallstones.

12.
Environ Sci Technol ; 58(12): 5483-5490, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38484382

RESUMEN

Polychlorinated dibenzo-p-dioxins (PCDDs), comprising 75 congeners, have gained considerable attention from the general public and the scientific community owing to their high toxic potential. The base-catalyzed hydrolysis of PCDDs is crucial for the assessment of their environmental persistence. Nonetheless, owing to the substantial number of congeners and low hydrolysis rates of PCDDs, conducting hydrolysis experiments proves to be exceedingly time-consuming and financially burdensome. Herein, density functional theory and transition state theory were employed to predict the base-catalyzed hydrolysis of PCDDs in aquatic environments. Findings reveal that PCDDs undergo base-catalyzed hydrolysis in aquatic environments with two competing pathways: prevailing dioxin ring-opening and reduced reactivity in the hydrolytic dechlorination pathway. The resultant minor products include hydroxylated PCDDs, which exhibit thermodynamic stability surpassing that of the principal product, chlorinated hydroxydiphenyl ethers. The half-lives (ranging from 17.10 to 1.33 × 1010 h at pH = 8) associated with the base-catalyzed hydrolysis of PCDDs dissolved in water were shorter compared to those within the water-sediment environmental system. This observation implies that hydroxide ions can protect aquatic environments from PCDD contamination. Notably, this study represents the first attempt to predict the base-catalyzed hydrolysis of PCDDs by using quantum chemical methods.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Dibenzodioxinas Policloradas/toxicidad , Teoría Funcional de la Densidad , Hidrólisis , Agua , Catálisis , Dibenzofuranos Policlorados
13.
Theor Appl Genet ; 137(1): 17, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198011

RESUMEN

KEY MESSAGE: The new stripe rust resistance gene Yr4EL in tetraploid Th. elongatum was identified and transferred into common wheat via 4EL translocation lines. Tetraploid Thinopyrum elongatum is a valuable genetic resource for improving the resistance of wheat to diseases such as stripe rust, powdery mildew, and Fusarium head blight. We previously reported that chromosome 4E of the 4E (4D) substitution line carries all-stage stripe rust resistance genes. To optimize the utility of these genes in wheat breeding programs, we developed translocation lines by inducing chromosomal structural changes through 60Co-γ irradiation and developing monosomic substitution lines. In total, 53 plants with different 4E chromosomal structural changes were identified. Three homozygous translocation lines (T4DS·4EL, T5AL·4EL, and T3BL·4EL) and an addition translocation line (T5DS·4EL) were confirmed by the genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), FISH-painting, and wheat 55 K SNP array analyses. These four translocation lines, which contained chromosome arm 4EL, exhibited high stripe rust resistance. Thus, a resistance gene (tentatively named Yr4EL) was localized to the chromosome arm 4EL of tetraploid Th. elongatum. For the application of marker-assisted selection (MAS), 32 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome arm 4EL and co-segregation with Yr4EL. Furthermore, the 4DS·4EL line could be selected as a good pre-breeding line that better agronomic traits than other translocation lines. We transferred Yr4EL into three wheat cultivars SM482, CM42, and SM51, and their progenies were all resistant to stripe rust, which can be used in future wheat resistance breeding programs.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Hibridación Fluorescente in Situ , Fitomejoramiento , Tetraploidía , Poaceae/genética
14.
Chem Biol Drug Des ; 102(6): 1478-1488, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37712455

RESUMEN

Chronic rhinosinusitis (CRS) is an inflammatory disease of paranasal sinuses. This study is formulated to explore the roles of pro-inflammatory factors Chemerin and interleukin-17 (IL-17) in CRS. Patients suffering from CRS without/with nasal polyps (CRSsNP/CRSwNP), along with volunteers, were recruited. CRS rabbit models were constructed by Staphylococcus aureus infection and rabbits were injected with lentiviral vectors of short hairpin RNA-targeting Chemerin (shChemerin), followed by micro-computed tomography (CT) scan. Levels of Chemerin and IL-17 were determined, and histopathological lesions were observed in subjects and CRS rabbits. Correlations between Chemerin/IL-17 level and Lund-Mackay/Lund-Kennedy scores of subjects and the predictive value of Chemerin or IL-17 for CRS were analyzed. In CRS patients and rabbits, inflammatory degrees and the level of Chemerin/IL-17 were increased in pathological tissues or plasma, while Chemerin silencing alleviated CRS symptoms of CRS rabbits. Chemerin and IL-17 were mainly located in the immune cells of pathological tissues and presented the positive correlation with Lund-Mackay/Lund-Kennedy score of CRS patients. Also, they showed high predictive value for CRS. Micro-CT scan uncovered that CRS rabbits had increased bone remodeling, which was alleviated by Chemerin silencing. Collectively, Chemerin and IL-17 are potential predictors and Chemerin silencing alleviates inflammatory response and bone remodeling in chronic rhinosinusitis.


Asunto(s)
Rinitis , Sinusitis , Humanos , Conejos , Animales , Interleucina-17/genética , Microtomografía por Rayos X , Rinitis/diagnóstico , Sinusitis/diagnóstico , Enfermedad Crónica , Remodelación Ósea
15.
J Cell Sci ; 136(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37622462

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive and poorly treated subtype of breast cancer. Identifying novel drivers and mechanisms for tumor progression is essential for precise targeted therapy of TNBC. Immunoglobulin-like transcript 4 (ILT4; also known as LILRB2) is a classic myeloid suppressor for their activation and immune response. Our recent results found that ILT4 is also highly expressed in lung cancer cells, where it has a role in promoting immune evasion and thus tumor formation. However, the expression and function of ILT4 in breast cancer remains elusive. Here, using our patient cohort and public database analysis, we found that TNBC displayed the most abundant ILT4 expression among all breast cancer subtypes. Functionally, enriched ILT4 promoted TNBC cell proliferation, migration and invasion in vitro, as well as tumor growth and metastasis in vivo. Further mechanistic analysis revealed that ILT4 reprogrammed aerobic glycolysis of tumor cells via AKT-mTOR signaling-mediated glucose transporter 3 (GLUT3; also known as SLC2A3) and pyruvate kinase muscle 2 (PKM2, an isoform encoded by PKM) overexpression. ILT4 inhibition in TNBC reduced tumor progression and GLUT3 and PKM2 expression in vivo. Our study identified a novel driver for TNBC progression and proposed a promising strategy to combat TNBC by targeting ILT4.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Transportador de Glucosa de Tipo 3 , Proliferación Celular/genética , Glucosa
16.
Int J Gen Med ; 16: 3427-3433, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593673

RESUMEN

Objective: The present study was undertaken to assess the clinical significance of action research-based seamless care to improve imaging efficiency and alleviate patient anxiety. Methods: A total of eighty patients who underwent imaging examinations in our hospital between May 2019 and November 2020 were recruited for this study. The patients were randomly assigned to two groups: the control group receiving routine care and the observation group receiving seamless care based on action research. The random assignment was conducted using a simple random sampling technique, ensuring an equal allocation of participants to each group at a 1:1 ratio, resulting in 40 cases in each group. Outcome measures included imaging examination duration, mean nursing duration, examination cognition, and negative emotion scores. Results: Seamless care provided shorter imaging examination duration and nursing duration, and better ensured uneventful examinations than routine care (P<0.05). Patients given seamless care exhibited higher examination cognition versus those receiving routine care (P<0.05). Seamless care offered more mitigation of negative emotions for patients than routine care (P<0.05). Conclusion: Action research-based seamless care effectively improves imaging efficiency and patients' awareness of imaging examinations and contributes to alleviating patients' adverse events.

17.
Theor Appl Genet ; 136(8): 177, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540294

RESUMEN

KEY MESSAGE: Chromosome-specific painting probes were developed to identify the individual chromosomes from 1 to 7E in Thinopyrum species and detect alien genetic material of the E genome in a wheat background. The E genome of Thinopyrum is closely related to the ABD genome of wheat (Triticum aestivum L.) and harbors genes conferring beneficial traits to wheat, including high yield, disease resistance, and unique end-use quality. Species of Thinopyrum vary from diploid (2n = 2x = 14) to decaploid (2n = 10x = 70), and chromosome structural variation and differentiation have arisen during polyploidization. To investigate the variation and evolution of the E genome, we developed a complete set of E genome-specific painting probes for identification of the individual chromosomes 1E to 7E based on the genome sequences of Th. elongatum (Host) D. R. Dewey and wheat. By using these new probes in oligonucleotide-based chromosome painting, we showed that Th. bessarabicum (PI 531711, EbEb) has a close genetic relationship with diploid Th. elongatum (EeEe), with five chromosomes (1E, 2E, 3E, 6E, and 7E) maintaining complete synteny in the two species except for a reciprocal translocation between 4 and 5Eb. All 14 pairs of chromosomes of tetraploid Th. elongatum have maintained complete synteny with those of diploid Th. elongatum (Thy14), but the two sets of E genomes have diverged. This study also demonstrated that the E genome-specific painting probes are useful for rapid and effective detection of the alien genetic material of E genome in wheat-Thinopyrum derived lines.


Asunto(s)
Pintura Cromosómica , Oligonucleótidos , Oligonucleótidos/genética , Poaceae/genética , Triticum/genética , Cromosomas
18.
Food Funct ; 14(15): 7011-7023, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37439115

RESUMEN

Lycium ruthenicum Murr. (LR) has long been used as a unique nutritional and medicinal food to treat various diseases such as gouty arthritis. However, although recently the literature has focused on the protective roles of LR anthocyanins on gouty arthritis, there is no relevant research from a holistic perspective of lipid metabolism to study their anti-gout effects. In this study, a combined tissue lipidomics, network pharmacology, and molecular docking approach was performed to investigate the intervention mechanism of LR anthocyanins against a monosodium urate (MSU)-induced gout mouse model. 54 gout-related lipid markers were identified via lipidomic profiling of the mouse knee joint, including glycerophospholipids, sphingolipids, glycerolipids, and plasmalogens. Integrating with pathway analysis, network pharmacology, and molecular docking, the potential targets of LR anthocyanins for treating gouty arthritis were predicted, while pathways in cancer, prostate cancer, sphingolipid signaling, choline metabolism in cancer, arachidonic acid metabolism, and ovarian steroidogenesis were involved as shared critical pathways of lipidomic analysis and network pharmacology. Furthermore, the binding sites and patterns of 3 active components and 4 core targets with the lowest binding energies were explored. Western blotting was finally used to verify the expression levels of 4 core proteins: MMP2, MMP9, MAP2K1, and MAPK14. These results provide new insights into our understanding of gouty arthritis and the anti-gout mechanism of LR anthocyanins.


Asunto(s)
Artritis Gotosa , Gota , Lycium , Masculino , Ratones , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Antocianinas/farmacología , Antocianinas/química , Simulación del Acoplamiento Molecular , Lycium/química , Lipidómica , Farmacología en Red
19.
Plants (Basel) ; 12(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375936

RESUMEN

Stripe rust, which is caused by Puccinia striiformis f. sp. tritici, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid Thinopyrum elongatum (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat-tetraploid Th. elongatum 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid Th. elongatum, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid Th. elongatum, which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish Th. elongatum from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid Th. elongatum.

20.
BMC Geriatr ; 23(1): 294, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189072

RESUMEN

BACKGROUND: Neuron Specific Enolase (NSE), a neuro-biochemical protein marker, may correlate with the prognosis of stroke patients. Moreover, hypertension is the most common comorbidities in patients with acute ischemic stroke (AIS), and the relationship between NSE levels and long-term functional outcomes in such an increasingly large population is unclear. The aim of the study was to investigate the relationships mentioned above and optimize the prediction models. METHODS: From 2018 to 2020, 1086 admissions for AIS were grouped as hypertension and non-hypertension, while hypertension group was randomly divided into development and validation cohorts for internal validation. The severity of the stroke was staged by National Institutes of Health Stroke Scale (NIHSS) score. Stroke prognosis after 1 year of follow up was documented by modified Rankin Scale (mRS) score. RESULTS: Analysis revealed the following findings:(i) Serum NSE levels increased greatly in hypertension subjects with poor functional outcomes(p = 0.046). However, there was no association in non-hypertension individuals(p = 0.386). (ii) In addition to the conventional factors (age and NIHSS score), NSE (OR:1.241, 95% CI: 1.025-1.502) and prothrombin time were significantly related to the incidence of unfavorable outcomes. (iii)Based on the above four indicators, a novel nomogram was established to predict the prognosis of stoke in hypertension patients with the c-index values of 0.8851. CONCLUSIONS: Overall, high baseline NSE is associated with poor 1-year AIS outcomes in hypertension patients, suggesting NSE may be a potential prognostic and therapeutic target for stroke in hypertension patients.


Asunto(s)
Isquemia Encefálica , Hipertensión , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Pronóstico , Biomarcadores , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/complicaciones , Fosfopiruvato Hidratasa/uso terapéutico , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...