Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Hazard Mater ; 476: 135012, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944993

RESUMEN

Biodegradation of polyethylene (PE) plastics is environmentally friendly. To obtain the laccases that can efficiently degrade PE plastics, we generated 9 ancestral laccases from 23 bacterial three-domain laccases through ancestral sequence reconstruction. The optimal temperatures of the ancestral laccases were between 60 °C-80 °C, while their optimal pHs were at 3.0 or 4.0. Without substrate pretreatment and mediator addition, all the ancestral laccases can degrade low-density polyethylene (LDPE) films at pH 7.0 and 60 °C. Among them, Anc52, which shared low sequence identity (18 %-41.7 %) with the reported PE-degrading laccases, was the most effective for LDPE degradation. After the catalytic reactions at 90 °C for 14 h, Anc52 (0.2 mg/mL) induced clear wrinkles and deep pits on the PE film surface detected by scanning electron microscope, and its carbonyl and hydroxyl indices reached 2.08 and 2.42, respectively. Then, we identified the residues 203 and 288 critical for PE degradation through site-directed mutation on Anc52. Moreover, Anc52 be activated by heat treatment (60 °C and 90 °C) at pH 7.0, which gave it a high catalytic efficiency (kcat/Km= 191.73 mM-1·s-1) and thermal stability (half-life at 70 °C = 13.70 h). The ancestral laccases obtained here could be good candidates for PE biodegradation.

2.
PeerJ ; 12: e17424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827279

RESUMEN

Background: Nonylphenol (NP) is widely recognized as a crucial environmental endocrine-disrupting chemical and persistent toxic substance. The remediation of NP-contaminated sites primarily relies on biological degradation. Compound microbial products, as opposed to pure strains, possess a greater variety of metabolic pathways and can thrive in a wider range of environmental conditions. This characteristic is believed to facilitate the synergistic degradation of pollutants. Limited research has been conducted to thoroughly examine the potential compatibility of compound microbial agents with indigenous microflora, their ability to function effectively in practical environments, their capacity to enhance the dissipation of NP, and their potential to improve soil physicochemical and biological characteristics. Methods: In order to efficiently eliminate NP in contaminated soil in an eco-friendly manner, a simulation study was conducted to investigate the impact of bioaugmentation using the functional compound microbial agent NP-M2 at varying concentrations (50 and 200 mg/L) on the dynamics of the soil microbial community. The treatments were set as follows: sterilized soil with 50 mg/kg NP (CK50) or 200 mg/kg NP (CK200); non-sterilized soil with 50 mg/kg NP (TU50) or 200 mg/kg NP (TU200); non-sterilized soil with the compound microbial agent NP-M2 at 50 mg/kg NP (J50) or 200 mg/kg NP (J200). Full-length 16S rRNA analysis was performed using the PacBio Sequel II platform. Results: Both the indigenous microbes (TU50 and TU200 treatments) and the application of NP-M2 (J50 and J200 treatments) exhibited rapid NP removal, with removal rates ranging from 93% to 99%. The application of NP-M2 further accelerated the degradation rate of NP for a subtle lag period. Although the different treatments had minimal impacts on the soil bacterial α-diversity, they significantly altered the ß-diversity and composition of the bacterial community. The dominant phyla were Proteobacteria (35.54%-44.14%), Acidobacteria (13.55%-17.07%), Planctomycetes (10.78%-11.42%), Bacteroidetes (5.60%-10.74%), and Actinobacteria (6.44%-8.68%). The core species were Luteitalea_pratensis, Pyrinomonas_methylaliphatogenes, Fimbriiglobus_ruber, Longimicrobium_terrae, and Massilia_sp003590855. The bacterial community structure and taxon distribution in polluted soils were significantly influenced by the activities of soil catalase, sucrase, and polyphenol oxidase, which were identified as the major environmental factors. Notably, the concentration of NP and, to a lesser extent, the compound microbial agent NP-M2 were found to cause major shifts in the bacterial community. This study highlights the importance of conducting bioremediation experiments in conjunction with microbiome assessment to better understand the impact of bioaugmentation/biostimulation on the potential functions of complex microbial communities present in contaminated soils, which is essential for bioremediation success.


Asunto(s)
Biodegradación Ambiental , Fenoles , Microbiología del Suelo , Contaminantes del Suelo , Fenoles/farmacología , Microbiota/efectos de los fármacos , Suelo/química , Ecosistema , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación
3.
J Agric Food Chem ; 72(20): 11652-11662, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738910

RESUMEN

Pectin lyases (PNLs) can enhance juice clarity and flavor by degrading pectin in highly esterified fruits, but their inadequate acid resistance leads to rapid activity loss in juice. This study aimed to improve the acid resistance of Aspergillus niger PNL pelA through surface charge design. A modification platform was established by fusing pelA with a protein tag and expressing the fusion enzyme in Escherichia coli. Four single-point mutants were identified to increase the surface charge using computational tools. Moreover, the combined mutant M6 (S514D/S538E) exhibited 99.8% residual activity at pH 3.0. The M6 gene was then integrated into the A. niger genome using a multigene integration system to obtain the recombinant PNL AM6. Notably, AM6 improved the light transmittance of orange juice to 45.3%, which was 8.39 times higher than that of pelA. In conclusion, AM6 demonstrated the best-reported acid resistance, making it a promising candidate for industrial juice clarification.


Asunto(s)
Aspergillus niger , Jugos de Frutas y Vegetales , Proteínas Fúngicas , Polisacárido Liasas , Aspergillus niger/enzimología , Aspergillus niger/genética , Jugos de Frutas y Vegetales/análisis , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Polisacárido Liasas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Concentración de Iones de Hidrógeno , Manipulación de Alimentos , Ácidos/química , Ácidos/metabolismo , Ácidos/farmacología , Citrus sinensis/química , Pectinas/química , Pectinas/metabolismo , Estabilidad de Enzimas
4.
Carbohydr Polym ; 332: 121916, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431417

RESUMEN

Resveratrol (RES) is a natural polyphenol with excellent biological activity. But the poor stability and bioavailability of RES severely limit its application. Thus, the resveratrol-loaded sulfated Hericium erinaceus ß-glucan-chitosan nanoparticles (DS-CS-RES NPs) were prepared using electrostatic self-assembly to solve these problems in this study. The structure of DS-CS-RES NPs was spherical or sub spherical shape with small average particle size (191.07 nm), which was characterized by FT-IR, FS, XRD and TEM. DS-CS-RES NPs exhibited good stability and RES had a sustainable release from the nanoparticles in gastrointestinal digestion. Meanwhile, DS-CS-RES NPs could improve the inflammatory injury of LPS stimulated RAW264.7 macrophages by inhibiting the production of NO, IL-1ß, IL-6 and TNF-α. Furthermore, DS-CS-RES NPs had strong anti-inflammatory activity by regulating protein levels of NF-κB p65, STAT1 and TLR4 through NF-κB and JAK-STAT1 signaling pathway in vitro, and sulfated H. erinaceus ß-glucan-chitosan nanoparticle (DS-CS NPs) and RES had synergistic anti-inflammatory effect. Overall, DS-CS NPs can serve as a potential green and safe functional carrier for encapsulating resveratrol, which can improve its anti-inflammatory activity. This work may be conducive to the development of functional carrier for encapsulating RES and applications of hydrophobic active molecules in functional foods or medicines.


Asunto(s)
Quitosano , Hericium , Nanopartículas , Resveratrol/farmacología , Quitosano/química , Portadores de Fármacos/química , FN-kappa B , Sulfatos , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Antiinflamatorios/farmacología , Tamaño de la Partícula
5.
Front Oncol ; 14: 1276092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380370

RESUMEN

Introduction: Resistance to drug therapies is associated with a large majority of cancer-related deaths. ATP-binding cassette (ABC) transporter-mediated drug efflux, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), glutathione (GSH), senescence, and vacuole-type ATPase (V-ATPase) all contribute to the resistance. We recently showed that extracellular ATP (eATP) induces and regulates EMT, CSC formation, and ABC transporters in human cancer cells and tumors. eATP also consistently upregulates Stanniocalcin-1 (STC1), a gene that significantly contributes to EMT, CSC formation, and tumor growth. We also found that eATP enhances drug resistance in cancer cells through eATP internalization mediated by macropinocytosis, leading to an elevation of intracellular ATP (iATP) levels, induction of EMT, and CSC formation. However, these factors have never been systematically investigated in the context of eATP-induced drug resistance. Methods: In this study, we hypothesized that eATP increases drug resistance via inducing ABC efflux, EMT, CSCs, STC1, and their accompanied processes such as GSH reducing activity, senescence, and V-ATPase. RNA sequencing, metabolomics, gene knockdown and knockout, and functional assays were performed to investigate these pathways and processes. Results and discussion: Our study results showed that, in multiple human cancer lines, eATP induced genes involved in drug resistance, elevated ABC transporters' efflux activity of anticancer drugs; generated transcriptomic and metabolic profiles representing a drug resistant state; upregulated activities of GSH, senescence, and V-ATPase to promote drug resistance. Collectively, these newly found players shed light on the mechanisms of eATP-induced as well as STC1- and V-ATPase-mediated drug resistance and offer potential novel targets for combating drug resistance in cancers.

6.
Cell Biol Int ; 48(4): 510-520, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38225684

RESUMEN

Acute lung injury (ALI) is a severe disease with high mortality and poor prognosis, characterized by excessive and uncontrolled inflammatory response. Vascular endothelial growth factor A (VEGF-A) contributes to the development and progression of ALI. The aim of this study was to evaluate the role of glucose transporter 1 (GLUT1) in alveolar epithelial VEGF-A production in lipopolysaccharide (LPS)-induced ALI. An ALI mouse model was induced by LPS oropharyngeal instillation. Mice were challenged with LPS and then treated with WZB117, a specific antagonist of GLUT1. For the vitro experiments, cultured A549 cells (airway epithelial cell line) were exposed to LPS, with or without the GLUT1 inhibitors WZB117 or BAY876. LPS significantly upregulated of GLUT1 and VEGF-A both in the lung from ALI mice and in cultured A549. In vivo, treatment with WZB117 not only markedly decreased LPS-induced pulmonary edema, injury, neutrophilia, as well as levels of interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF), but also reduced VEGF-A production. Yet, the maximum tolerated concentration of WZB117 failed to suppress LPS-induced VEGF-A overexpression in vitro. While administration of BAY876 inhibited gene and protein expression as well as secretion of VEGF-A in response to LPS in A549. These results illustrated that GLUT1 upregulates VEGF-A production in alveolar epithelia from LPS-induced ALI, and inhibition of GLUT1 alleviates ALI.


Asunto(s)
Lesión Pulmonar Aguda , Hidroxibenzoatos , Lipopolisacáridos , Ratones , Animales , Lipopolisacáridos/toxicidad , Factor A de Crecimiento Endotelial Vascular/metabolismo , Transportador de Glucosa de Tipo 1 , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Epitelio/metabolismo
7.
Acta Pharm Sin B ; 13(12): 5107-5120, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045064

RESUMEN

Oxidative stress injury and mitochondrial dysfunction are major obstacles to neurological functional recovery after ischemic stroke. The development of new approaches to simultaneously diminish oxidative stress and resist mitochondrial dysfunction is urgently needed. Inspired by the overproduced reactive oxygen species (ROS) at ischemic neuron mitochondria, multifunctional nanoparticles with ROS-responsiveness and mitochondrial-targeted (SPNPs) were engineered, achieving specific targeting delivery and controllable drug release at ischemic penumbra. Due to the nose-to-brain pathway, SPNPs which were encapsulated in a thermo-sensitive gel by intranasal administration were directly delivered to the ischemic penumbra bypassing the blood‒brain barrier (BBB) and enhancing delivery efficiency. The potential of SPNPs for ischemic stroke treatment was systematically evaluated in vitro and in rat models of middle cerebral artery occlusion (MCAO). Results demonstrated the mitochondrial-targeted and protective effects of SPNPs on H2O2-induced oxidative damage in SH-SY5Y cells. In vivo distribution analyzed by fluorescence imaging proved the rapid and enhanced active targeting of SPNPs to the ischemic area in MCAO rats. SPNPs by intranasal administration exhibited superior therapeutic efficacy by alleviating oxidative stress, diminishing inflammation, repairing mitochondrial function, and decreasing apoptosis. This strategy provided a multifunctional delivery system for the effective treatment of ischemic injury, which also implies a potential application prospect for other central nervous diseases.

8.
Int J Biol Macromol ; 253(Pt 6): 127189, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37783245

RESUMEN

Skin trauma presents significant treatment challenges in clinical settings. Hydrogels made from naturally-derived polysaccharide have demonstrated great potential in wound healing. Here, a novel in-situ crosslinked self-healing hydrogel was prepared using oxidized Bletilla striata polysaccharide (BSP) and cationic gelatin via a Schiff-base reaction without the need for any chemical crosslinkers. Similar to the natural extracellular matrix, the BSP-gelatin hydrogel (BG-gel) exhibited typical viscoelastic characteristics. The rheological properties, mechanical behavior, porous structure, and degradation performance of BG-gel could be adjusted by changing the aldehyde group content of BSP. Importantly, the hydrogel showed superior hemostatic performance in mouse tail amputation and rat liver incision models. It significantly facilitated wound healing by promoting hair follicles regeneration, blood vessels repair, collagen deposition, and inducing skin tissue remodeling via increased CD31 expression in a full-thickness skin wound rat model. This multifunctional hydrogel holds potential as a wound dressing for skin trauma, offering both hemostasis and expedited healing.


Asunto(s)
Gelatina , Hidrogeles , Ratas , Ratones , Animales , Hidrogeles/farmacología , Hidrogeles/química , Gelatina/química , Cicatrización de Heridas , Polisacáridos/farmacología , Polisacáridos/química , Vendajes , Antibacterianos/farmacología
9.
Sci Total Environ ; 902: 166128, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562631

RESUMEN

Denitrification is an important step in domestic wastewater treatment, but providing bioavailable electron donors is an expense. However, some industrial wastewaters contain organic compounds that could be a no-cost or low-cost electron donor, because they otherwise must be treated separately. In this work, quinoline was used as an electron donor to drive denitrification through bioaugmentation with Rhodococcus ruber, which is able to biodegrade quinoline. When quinoline-acclimated biomass (QAB) was used for denitrification, addition of R. ruber accelerated biodegradation of quinoline and its first mono-oxygenation intermediate (2-hydroxyquinoline). Although R. ruber was not directly active in denitrification, its biodegradation of quinoline and 2-hydroxyquinoline supplied products that other bacteria used to respire nitrate. In contrast, glucose-acclimated biomass (GAB) could not achieve effective denitrification with quinoline, whether or not R. ruber was added. Analysis by high-throughout sequencing showed that genera Ignavibacterium, Ferruginibacter, Limnobacter, and Denitrosoma were important during quinoline biodegradation with denitrification by QAB. In summary, bioaugmented R. ruber and endogenous bacterial strains had complementary roles when biodegrading quinoline to enhance denitrification. The significance of this study is to enable the use of industrial wastewater to provide electron donor to drive denitrification.


Asunto(s)
Quinolinas , Rhodococcus , Desnitrificación , Electrones , Quinolinas/metabolismo , Rhodococcus/metabolismo , Reactores Biológicos
10.
Eur J Pharmacol ; 956: 175941, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37536626

RESUMEN

Chansu, a mixture extracted from Duttaphrynus melanostictus or Bufo gargarizans Cantor, is a traditional Chinese medicine with a broad range of medical applications. However, the peptides/proteins in it have not received adequate attention. Herein, a Cathelicidin-DM-derived peptide named Cath-DM-NT was identified from the skin of D. melanostictus. Previous studies have shown that Cathelicidin-DM has significant antibacterial activity, while Cath-DM-NT has no antibacterial activity. In this study, Cath-DM-NT is found to have lectin-like activity which can agglutinate erythrocytes and bacteria, and bind to lipopolysaccharide (LPS). In addition, Cath-DM-NT has antioxidant activity, which can scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide (NO) radicals and reduce Fe3+. Consistently, Cath-DM-NT can protect PC12 cells from H2O2-induced oxidative damage and carrageenan-induced paw edema, reduce malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation, and restore superoxide dismutase (SOD) and glutathione (GSH) levels. Our study suggests that Cath-DM-NT can serve as a lead compound for the development of drugs with dual lectin and antioxidant effects.


Asunto(s)
Antioxidantes , Catelicidinas , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/química , Lectinas/farmacología , Peróxido de Hidrógeno/farmacología , Glutatión , Bufonidae
11.
Molecules ; 28(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446662

RESUMEN

Gentian is a traditional Chinese herb with heat-clearing, damp-drying, inflammation-alleviating and digestion-promoting effects, which is widely used in clinical practice. However, there are many species of gentian. According to the pharmacopoeia, Gentiana manshurica Kitag, Gentiana scabra Bge, Gentiana triflora Pall and Gentianarigescens Franch are included. Therefore, accurately identifying the species of gentian is important in clinical use. In recent years, with the advantages of low cost, convenience, fast analysis and high sensitivity, infrared spectroscopy (IR) has been extensively used in herbal identification. Unlike one-dimensional spectroscopy, a two-dimensional correlation spectrum (2D-COS) can improve the resolution of the spectrum and better highlight the details that are difficult to detect. In addition, the residual neural network (ResNet) is an important breakthrough in convolutional neural networks (CNNs) for significant advantages related to image recognition. Herein, we propose a new method for identifying gentian-related species using 2D-COS combined with ResNet. A total of 173 gentian samples from seven different species are collected in this study. In order to eliminate a large amount of redundant information and improve the efficiency of machine learning, the extracted feature band method was used to optimize the model. Four feature bands were selected from the infrared spectrum, namely 3500-3000 cm-1, 3000-2750 cm-1, 1750-1100 cm-1 and 1100-400 cm-1, respectively. The one-dimensional spectral data were converted into synchronous 2D-COS images, asynchronous 2D-COS images, and integrative 2D-COS images using Matlab (R2022a). The identification strategy for these three 2D-COS images was based on ResNet, which analyzes 2D-COS images based on single feature bands and full bands as well as fused feature bands. According to the results, (1) compared with the other two 2D-COS images, synchronous 2D-COS images are more suitable for the ResNet model, and (2) after extracting a single feature band 1750-1100 cm-1 to optimize ResNet, the model has the best convergence performance, the accuracy of training, test and external validation is 1 and the loss value is only 0.155. In summary, 2D-COS combined with ResNet is an effective and accurate method to identify gentian-related species.


Asunto(s)
Gentiana , Gentiana/química , Redes Neurales de la Computación , Espectrofotometría Infrarroja , Aprendizaje Automático , Calor
12.
Materials (Basel) ; 16(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37109858

RESUMEN

The internal wall of cardiovascular stent tubing produced by a drawing process has defects such as pits and bumps, making the surface rough and unusable. In this research, the challenge of finishing the inner wall of a super-slim cardiovascular stent tube was solved by magnetic abrasive finishing. Firstly, a spherical CBN magnetic abrasive was prepared by a new method, plasma molten metal powders bonding with hard abrasives; then, a magnetic abrasive finishing device was developed to remove the defect layer from the inner wall of ultrafine long cardiovascular stent tubing; finally, response surface tests were performed and parameters were optimized. The results show that the prepared spherical CBN magnetic abrasive has a perfect spherical appearance; the sharp cutting edges cover the surface layer of the iron matrix; the developed magnetic abrasive finishing device for a ultrafine long cardiovascular stent tube meets the processing requirements; the process parameters are optimized by the established regression model; and the inner wall roughness (Ra) of the nickel-titanium alloy cardiovascular stents tube is reduced from 0.356 µm to 0.083 µm, with an error of 4.3% from the predicted value. Magnetic abrasive finishing effectively removed the inner wall defect layer and reduced the roughness, and this solution provides a reference for polishing the inner wall of ultrafine long tubes.

13.
Int Wound J ; 20(7): 2634-2639, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36880410

RESUMEN

A meta-analysis study to assess the outcome of enhanced recovery (ER) after radical cystectomy (RC) on wound dehiscence was performed. A comprehensive literature examination till January 2023 was implemented and 1457 linked studies were appraised. The picked studies contained 772 open RC subjects in the picked studies' baseline, 436 of them were enhanced recovery after RC, and 336 were open RC. Odds ratio (OR) in addition to 95% confidence intervals (CIs) were used to calculate the consequence of enhanced recovery after RC on wound dehiscence after open RC by the dichotomous styles and a fixed or random model. The ER after RC caused significantly lower wound dehiscence (OR, 0.51; 95% CI, 0.30-0.89, P = .02) with low heterogeneity (I2  = 46%) compared with open RC. The ER after RC caused significantly lower wound dehiscence compared with open RC. Thorough precaution should be taken when commerce with the consequences because a limited number of studies were found and selected for this meta-analysis.


Asunto(s)
Cistectomía , Neoplasias de la Vejiga Urinaria , Humanos , Cistectomía/efectos adversos , Neoplasias de la Vejiga Urinaria/complicaciones , Neoplasias de la Vejiga Urinaria/cirugía , Complicaciones Posoperatorias/etiología , Tiempo de Internación
14.
Micromachines (Basel) ; 14(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985028

RESUMEN

In this investigation, spherical Al2O3 magnetic abrasive particles (MAPs) were used to polish the inner surface of ultra-fine long cobalt-chromium alloy cardiovascular stent tubes. The magnetic abrasives were prepared by combining plasma molten metal powder and hard abrasives, and the magnetic abrasives prepared by this new method are characterized by high sphericity, narrow particle size distribution range, long life, and good economic value. Firstly, the spherical Al2O3 magnetic abrasives were prepared by the new method; secondly, the polishing machine for the inner surface of the ultra-fine long cardiovascular stent tubes was developed; finally, the influence laws of spindle speed, magnetic pole speed, MAP filling quantities, the magnetic pole gap on the surface roughness (Ra), and the removal thickness (RT) of tubes were investigated. The results showed that the prepared Al2O3 magnetic abrasives were spherical in shape, and their superficial layer was tightly bound with Al2O3 hard abrasives with sharp cutting; the use of spherical Al2O3 magnetic abrasives could achieve the polishing of the inner surface of ultra-fine cobalt-chromium alloy cardiovascular bracket tubes, and after processing, the inner surface roughness (Ra) of the tubes decreased from 0.337 µm to 0.09 µm and had an RT of 5.106 µm.

15.
Front Microbiol ; 14: 1102576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937273

RESUMEN

Antimicrobial peptide is one important component of the first protective barrier of organisms. They not only have potent antimicrobial activity which can protect the body from the invading pathogens, but also participate in the immune regulation of the body. In this study, a Brevinin-1 peptide named by Brevinin-1GHd was identified from Hoplobatrachus rugulosus, and the similarity of mature peptide sequence among Brevinin-1GHd, Brevinin-1HL and Brevinin-1GHa supported the close species relationship between H. rugulosus, Hylarana latouchii and Hylarana guertheri. Moreover, the secondary structure of Brevinin-1GHd was found to possess α-helical characteristics and high thermal stability. In addition, Brevinin-1GHd could bind to LPS with a Kd value of 6.49 ± 5.40 mM and suppress the release of TNF-α, NO, IL-6 and IL-1ß by inactivation of MAPK signaling pathway in RAW 264.7 cells induced by LPS. Furtherly, Brevinin-1GHd had a significant inhibitory effect on acute edema development in the right paw of mice injected by carrageenan. Thus, the significant LPS-neutralizing and anti-inflammatory activities of Brevinin-1GHd were demonstrated in this study, which made it become the first Brevinin-1 family peptide with anti-inflammatory activity reported so far, and the biological activity of Brevinin-1GHd made it promising to be a novel therapeutic drug for infectious inflammation.

16.
Signal Transduct Target Ther ; 8(1): 138, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964157

RESUMEN

Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.


Asunto(s)
Asma , Hipersensibilidad , Humanos , Hipersensibilidad/epidemiología , Hipersensibilidad/genética , Hipersensibilidad/terapia , Citocinas , Asma/epidemiología , Asma/genética , Asma/terapia , Linfopoyetina del Estroma Tímico
17.
Cancer Cell Int ; 23(1): 20, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750864

RESUMEN

Despite the rapid development of therapeutic strategies in cancer treatment, metastasis remains the major cause of cancer-related death and scientific challenge. Epithelial-Mesenchymal Transition (EMT) plays a crucial role in cancer invasion and progression, a process by which tumor cells lose cell-cell adhesion and acquire increased invasiveness and metastatic activity. Recent work has uncovered some crucial roles of extracellular adenosine 5'- triphosphate (eATP), a major component of the tumor microenvironment (TME), in promoting tumor growth and metastasis. Intratumoral extracellular ATP (eATP), at levels of 100-700 µM, is 103-104 times higher than in normal tissues. In the current literature, eATP's function in promoting metastasis has been relatively poorly understood as compared with intracellular ATP (iATP). Recent evidence has shown that cancer cells internalize eATP via macropinocytosis in vitro and in vivo, promoting cell growth and survival, drug resistance, and metastasis. Furthermore, ATP acts as a messenger molecule that activates P2 purinergic receptors expressed on both tumor and host cells, stimulating downstream signaling pathways to enhance the invasive and metastatic properties of tumor cells. Here, we review recent progress in understanding eATP's role in each step of the metastatic cascade, including initiating invasion, inducing EMT, overcoming anoikis, facilitating intravasation, circulation, and extravasation, and eventually establishing metastatic colonization. Collectively, these studies reveal eATP's important functions in many steps of metastasis and identify new opportunities for developing more effective therapeutic strategies to target ATP-associated processes in cancer.

18.
Appl Opt ; 62(5): 1384-1391, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36821243

RESUMEN

To study the influence of laser process parameters on the surface properties of the coating, N i-A l 2 O 3 composite coatings on 304 stainless-steel sheets with laser-assisted pulsed electrodeposition was proposed in this paper. Laser single pulse energy and scanning speed were selected as research factors. Single-factor experiments were performed to investigate the effect of various factors on the surface morphology, particle mass fraction, microhardness, surface roughness, and corrosion resistance of the composite coating. The experimental results show that the surface properties of the composite coating first increase and then decrease with increasing laser single pulse energy. When the laser single pulse energy is 11 µJ, the minimum surface roughness value is 0.380 µm with a smooth and uniform coating surface and the best surface morphology. Moreover, as the scanning speed increases, the corrosion resistance of the composite coating initially increases and then decreases. The corrosion resistance of the composite coatings is best with a scanning speed of 1000 mm/s. When the scanning speed was 1500 mm/s, the particle mass fraction in the coating reached a maximum of 1.984%; meanwhile, the highest hardness of the composite coating was obtained with the value of 476.38 HV.

19.
Water Res ; 229: 119455, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516493

RESUMEN

Because many wastewater-treatment plants receive effluents containing inhibitory compounds from chemical or pharmaceutical facilities, the input of these inhibitors can lead to failure of nitrification and total-N removal. Nitrification de facto is the more important process, as it is the first step of nitrogen removal and involves slow-growing autotrophic bacteria. In this work, quinoline, the target compound severely inhibited nitrification: The biomass-normalized nitrification rate decreased four-fold in the presence of quinoline. The inhibition was relieved by bioaugmenting Comamonas testosteroni or Rhodococcus ruber to the nitrifying biomass. Because the inhibition was derived from a quinoline intermediate, 2­hydroxyl quinoline (2HQ), not quinoline itself, nitrification was accelerated only after 2HQ disappeared due to the addition of R. ruber or C. testosteroni. R. ruber was superior to C. testosteroni for 2HQ biodegradation and accelerating nitrification. Besides accelerating nitrification, adding C. testosteroni or R. ruber led to the enrichment of Nitrospira, which appeared to be carrying out commamox metabolism, since ammonium-oxidizing bacteria were not enriched.


Asunto(s)
Compuestos de Amonio , Comamonas testosteroni , Rhodococcus , Nitrificación , Oxidación-Reducción , Reactores Biológicos/microbiología
20.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3357-3363, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38511375

RESUMEN

We analyzed the particle size distribution of soil aggregates in 0-20 and 20-40 cm soil layers of rice-wheat rotation field based on a field plot test with two treatments, conventional straw returning (CK) and straw returning with the addition of straw decomposition promoting microbial inoculants (IT). We evaluated the water stability indices of soil aggregates (the number of soil water stable large aggregates R0.25, the average weight diameter MWD, and the geometric average diameter GMD), and measured the contents of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) in the soil aggregates of <0.053, 0.053-0.25, 0.25-1, >1 mm. The results showed that: 1) The number of aggregates <0.053, 0.053-0.25, >0.25 mm in the 0-20 and 20-40 cm soil layers under IT decreased by 10.0% and 6.8%, increased by 3.0% and 5.7%, and 17.9% and 26.1% compared with CK, respectively. IT effectively increased R0.25, MWD, and GMD by 26.4%, 20.0%, 18.2% and 18.2%, 10.5%, 10.0% in 0-20 and 20-40 cm soil, respectively. 2) Compared to CK, the TP content of 0.25-1 mm aggregates in 0-20 and 20-40 cm soil under IT was significantly increased by 40.3% and 37.5%, respectively, without difference in TN and SOC contents. There was no significant difference in nutrient contents of the other aggregates between the treatments. The contents of SOC and TN in large aggregates (>0.25 mm) were higher than those in silty aggregates (<0.053 mm). Compared to CK, the cumulative contribution rates of SOC, TN and TP of <0.053 mm aggregates under IT were decreased in two soil layers. There was no significant difference in the nutrient cumulative contribution rates of 0.053-0.25 mm aggregates between treatments. The cumulative contribution rates of SOC, TN, and TP of large aggregates (>0.25 mm) under IT were 32.1%, 19.6%, 52.8% and 22.8%, 11.8%, 42.9% higher than those under CK in 0-20 and 20-40 cm soils, respectively. 3) The number of <0.053 mm aggregates was significantly negatively correlated with SOC and TP contents, while that of 0.053-0.25 mm aggregates was negatively correlated with nutrient content. The number of large aggregates (>0.25 mm) were significantly positively correlated with SOC, TN, and TP contents. In conclusion, straw returning with microbial-inoculant addition could promote the formation of soil macroaggregates (>0.25 mm), and improve the water stability of soil aggregates, increasing nutrient contents in soil macroaggregates, with the nutrients transferring from silty aggregates to macroaggregates.


Asunto(s)
Inoculantes Agrícolas , Suelo , Carbono/análisis , Nitrógeno/análisis , Nutrientes , Fósforo , Agua , Agricultura/métodos , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...