Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Pharmacol ; 103(4): 221-229, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36635052

RESUMEN

Sodium channel inhibitors used as local anesthetics, antiarrhythmics, or antiepileptics typically have the property of use-dependent inhibition, whereby inhibition is enhanced by repetitive channel activation. For targeting pain, Nav1.8 channels are an attractive target because they are prominent in primary pain-sensing neurons, with little or no expression in most other kinds of neurons, and a number of Nav1.8-targeted compounds have been developed. We examined the characteristics of Nav1.8 inhibition by one of the most potent Nav1.8 inhibitors so far described, A-887826, and found that when studied with physiologic resting potentials and physiologic temperatures, inhibition had strong "reverse use dependence", whereby inhibition was relieved by repetitive short depolarizations. This effect was much stronger with A-887826 than with A-803467, another Nav1.8 inhibitor. The use-dependent relief from inhibition was seen in both human Nav1.8 channels studied in a cell line and in native Nav1.8 channels in mouse dorsal root ganglion (DRG) neurons. In native Nav1.8 channels, substantial relief of inhibition occurred during repetitive stimulation by action potential waveforms at 5 Hz, suggesting that the phenomenon is likely important under physiologic conditions. SIGNIFICANCE STATEMENT: Nav1.8 sodium channels are expressed in primary pain-sensing neurons and are a prime current target for new drugs for pain. This work shows that one of the most potent Nav1.8 inhibitors, A-887826, has the unusual property that inhibition is relieved by repeated short depolarizations. This "reverse use dependence" may reduce inhibition during physiological firing and should be selected against in drug development.


Asunto(s)
Morfolinas , Canal de Sodio Activado por Voltaje NAV1.8 , Neuronas , Niacinamida , Dolor , Animales , Humanos , Ratones , Ganglios Espinales , Potenciales de la Membrana , Morfolinas/farmacología , Morfolinas/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.8/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Niacinamida/farmacología , Niacinamida/uso terapéutico , Dolor/tratamiento farmacológico , Dolor/metabolismo , Ratas Sprague-Dawley , Ratas
2.
Cell Calcium ; 106: 102635, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944383

RESUMEN

High-voltage-activated calcium channels (HVACCs) are promising targets for developing analgesics given their roles in controlling synaptic transmission, neuronal excitability and neuropeptide release in primary nociceptive neurons. Despite previous efforts in developing HVACCs inhibitors of various drug modalities, it remains undetermined whether targeting HVACCs directly by a gene therapy approach could lead to pain alleviation in vivo. To test this, Sun and colleagues adopted a post-translational ubiquitination-based knockdown method targeting HVACCs in primary sensory neurons. They showed ablation of HVACC currents in a subset of primary sensory neurons, dampened hyperexcitability of sensory neurons after nerve injury and reduced pain behavior with no apparent adverse effects [1]. The results open the possibility of targeting ion channels with ubiquitination-based knockdown as a promising gene therapy candidate for pain treatment in future clinical studies.


Asunto(s)
Células Receptoras Sensoriales , Transmisión Sináptica , Animales , Canales de Calcio/metabolismo , Ganglios Espinales/metabolismo , Dolor , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/metabolismo
3.
Elife ; 112022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35129439

RESUMEN

Olfactory information is encoded in lateral entorhinal cortex (LEC) by two classes of layer 2 (L2) principal neurons: fan and pyramidal cells. However, the functional properties of L2 cells and how they contribute to odor coding are unclear. Here, we show in awake mice that L2 cells respond to odors early during single sniffs and that LEC is essential for rapid discrimination of both odor identity and intensity. Population analyses of L2 ensembles reveal that rate coding distinguishes odor identity, but firing rates are only weakly concentration dependent and changes in spike timing can represent odor intensity. L2 principal cells differ in afferent olfactory input and connectivity with inhibitory circuits and the relative timing of pyramidal and fan cell spikes provides a temporal code for odor intensity. Downstream, intensity is encoded purely by spike timing in hippocampal CA1. Together, these results reveal the unique processing of odor information by LEC subcircuits and highlight the importance of temporal coding in higher olfactory areas.


Asunto(s)
Corteza Entorrinal/fisiología , Neuronas/fisiología , Odorantes , Olfato/fisiología , Humanos
4.
Elife ; 112022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179483

RESUMEN

Cannabidiol (CBD), a chemical found in the Cannabis sativa plant, is a clinically effective antiepileptic drug whose mechanism of action is unknown. Using a fluorescence-based thallium flux assay, we performed a large-scale screen and found enhancement of flux through heterologously expressed human Kv7.2/7.3 channels by CBD. Patch-clamp recordings showed that CBD acts at submicromolar concentrations to shift the voltage dependence of Kv7.2/7.3 channels in the hyperpolarizing direction, producing a dramatic enhancement of current at voltages near -50 mV. CBD enhanced native M-current in mouse superior cervical ganglion starting at concentrations of 30 nM and also enhanced M-current in rat hippocampal neurons. The potent enhancement of Kv2/7.3 channels by CBD may contribute to its effectiveness as an antiepileptic drug by reducing neuronal hyperexcitability.


Asunto(s)
Cannabidiol/farmacología , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Neuronas/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Fenómenos Electrofisiológicos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Neuronas/efectos de los fármacos , Ratas
5.
Nat Neurosci ; 25(2): 168-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34931070

RESUMEN

Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Nav1.8+ or Advillin+ neurons. ET modulated protein kinase A signaling in mouse sensory and human induced pluripotent stem cell-derived sensory neurons, and attenuated spinal cord neurotransmission. We further engineered anthrax toxins to introduce exogenous protein cargoes, including botulinum toxin, into DRG neurons to silence pain. Our study highlights interactions between a bacterial toxin and nociceptors, which may lead to the development of new pain therapeutics.


Asunto(s)
Carbunco , Bacillus anthracis , Toxinas Bacterianas , Células Madre Pluripotentes Inducidas , Animales , Carbunco/microbiología , Carbunco/terapia , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Ganglios Espinales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Nociceptores/metabolismo , Dolor , Receptores de Péptidos/metabolismo
6.
J Neurosci ; 41(30): 6371-6387, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34131037

RESUMEN

The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to have analgesic effects in animal studies but little is known about its mechanism of action. We examined the effects of CBD on intrinsic excitability of primary pain-sensing neurons. Studying acutely dissociated capsaicin-sensitive mouse DRG neurons at 37°C, we found that CBD effectively inhibited repetitive action potential firing, from 15-20 action potentials evoked by 1 s current injections in control to 1-3 action potentials with 2 µm CBD. Reduction of repetitive firing was accompanied by a reduction of action potential height, widening of action potentials, reduction of the afterhyperpolarization, and increased propensity to enter depolarization block. Voltage-clamp experiments showed that CBD inhibited both TTX-sensitive and TTX-resistant (TTX-R) sodium currents in a use-dependent manner. CBD showed strong state-dependent inhibition of TTX-R channels, with fast binding to inactivated channels during depolarizations and slow unbinding on repolarization. CBD alteration of channel availability at various voltages suggested that CBD binds especially tightly [Kd (dissociation constant), ∼150 nm] to the slow inactivated state of TTX-R channels, which can be substantially occupied at voltages as negative as -40 mV. Remarkably, CBD was more potent in inhibiting TTX-R channels and inhibiting action potential firing than the local anesthetic bupivacaine. We conclude that CBD might produce some of its analgesic effects by direct effects on neuronal excitability, with tight binding to the slow inactivated state of Nav1.8 channels contributing to effective inhibition of repetitive firing by modest depolarizations.SIGNIFICANCE STATEMENT Cannabidiol (CBD) has been shown to inhibit pain in various rodent models, but the mechanism of this effect is unknown. We describe the ability of CBD to inhibit repetitive action potential firing in primary nociceptive neurons from mouse dorsal root ganglia and analyze the effects on voltage-dependent sodium channels. We find that CBD interacts with TTX-resistant sodium channels in a state-dependent manner suggesting particularly tight binding to slow inactivated states of Nav1.8 channels, which dominate the overall inactivation of Nav1.8 channels for small maintained depolarizations from the resting potential. The results suggest that CBD can exert analgesic effects in part by directly inhibiting repetitive firing of primary nociceptors and suggest a strategy of identifying compounds that bind selectively to slow inactivated states of Nav1.8 channels for developing effective analgesics.


Asunto(s)
Analgésicos/farmacología , Cannabidiol/farmacología , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Nociceptores/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Ganglios Espinales , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.8/efectos de los fármacos , Nociceptores/metabolismo
7.
Elife ; 82019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31765298

RESUMEN

Voltage-dependent sodium and calcium channels in pain-initiating nociceptor neurons are attractive targets for new analgesics. We made a permanently charged cationic derivative of an N-type calcium channel-inhibitor. Unlike cationic derivatives of local anesthetic sodium channel blockers like QX-314, this cationic compound inhibited N-type calcium channels more effectively with extracellular than intracellular application. Surprisingly, the compound is also a highly effective sodium channel inhibitor when applied extracellularly, producing more potent inhibition than lidocaine or bupivacaine. The charged inhibitor produced potent and long-lasting analgesia in mouse models of incisional wound and inflammatory pain, inhibited release of the neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion neurons, and reduced inflammation in a mouse model of allergic asthma, which has a strong neurogenic component. The results show that some cationic molecules applied extracellularly can powerfully inhibit both sodium channels and calcium channels, thereby blocking both nociceptor excitability and pro-inflammatory peptide release.


Asunto(s)
Canales de Calcio Tipo N/genética , Inflamación Neurogénica/tratamiento farmacológico , Dolor/tratamiento farmacológico , Canales de Sodio/genética , Animales , Bupivacaína/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Humanos , Lidocaína/análogos & derivados , Lidocaína/farmacología , Ratones , Inflamación Neurogénica/genética , Inflamación Neurogénica/patología , Nociceptores , Dolor/genética , Dolor/patología , Bloqueadores de los Canales de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...